The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the ti...The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.展开更多
Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. H...Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. However, there was a tradeoff between resolution and penetration. Chirp excitations partially solved the tradeoff, but the chirp setting parameters were not optimized. The present work proposes for the first time combining chirp inversion with ultrasound contrast imaging, with the motivation to improve the contrast, by automatically optimizing the setting parameters of chirp excitation, it is thus an optimal command problem. Linear chirps, 5 μm diameter microbubbles and gradient ascent algorithm were simulated to optimize the chirp setting parameters. Simulations exhibited a gain of 5 dB by automatic optimization of chirp inversion relative to pulse inversion. The automatic optimization process was quite fast. Combining chirp inversion with ultrasound contrast imaging led to a maximum backscattered power permitting high contrast outcomes and optimum parameters.展开更多
Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some par...Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.展开更多
基金supported by the National Natural Science Foundation of China (60872003 61071214)+1 种基金the Doctoral Fund of Ministry of Education of China (20093201110005)the Foundation of Chinese National Defense Technology Key Laboratory (9140C1301031001)
文摘The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
文摘Medical ultrasound contrast imaging is a powerful modality undergoing successive developments in the last decade to date Lately, pulse inversion has been used in both ultrasound tissue harmonic and contrast imaging. However, there was a tradeoff between resolution and penetration. Chirp excitations partially solved the tradeoff, but the chirp setting parameters were not optimized. The present work proposes for the first time combining chirp inversion with ultrasound contrast imaging, with the motivation to improve the contrast, by automatically optimizing the setting parameters of chirp excitation, it is thus an optimal command problem. Linear chirps, 5 μm diameter microbubbles and gradient ascent algorithm were simulated to optimize the chirp setting parameters. Simulations exhibited a gain of 5 dB by automatic optimization of chirp inversion relative to pulse inversion. The automatic optimization process was quite fast. Combining chirp inversion with ultrasound contrast imaging led to a maximum backscattered power permitting high contrast outcomes and optimum parameters.
基金supported by Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)National Natural Science Foundation of China(No.61401196)
文摘Sine Non-linear Chirp Keying(SNCK) is a kind of high-efficient modulation scheme, which provides a potential new beamforming method in communication and radar systems. It has been proved to have advantages in some parameter estimation issues over conventional modulation schemes. In this paper, a novel transform termed as Discrete Sinusoidal Frequency Modulation transform(DSFMT) is proposed. Then, the DSFMT of SNCK signal is deduced and classified into three types, based on which, the time-bandwidth product is estimated by the proposed algorithm. Simulation results show that the noise has a signifi cant impact on the localization of the peak value and the time-bandwidth product can be estimated by using local ratio values when.