Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and nu...Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.展开更多
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg gratin...We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.展开更多
A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse...A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.展开更多
A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped...A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped phase mask, fast tuning response time, continuously adjustable, all-fiber based, compact, and cheap.展开更多
This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission pe...This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission peaks could be independently tuned via computer. The tunable range is about 18 rim. With this filter we demonstrated a tunable fiber ring laser which has an output power of about -7 dBm, full-width at half- maximum linewidth of-0.017 nm which is limited by the resolution of the optical spectrum analyzer (OSA). Furthermore, a spacing tunable dual-wavelength fiber laser was achieved with the same setup. This all-fiber laser features advantages like simple structure, low cost, flexible and digital tuning capability.展开更多
A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the f...A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the fiber end face, presents an aperiodic behavior due to the CFBG. A laser located in the fringe pattern slope is used to interrogate the sensing head. The optical power parameter is analyzed when strain is applied, for long and short period fringe pattern wavelengths, and sensitivities of-2.87 μW/με and-5.48μW/με are respectively obtained. This configuration presents a resolution of 70 ε.展开更多
A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 1...A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.展开更多
A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three indepe...A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three independent vibration sensing units. Each unit uses double matched chirped gratings as sensing elements, and the sensing signal is processed by the edge filtering demodulation method. The structure and principle of the sensor are theoretically analyzed, and its performances are obtained from some experiments and the results are as follows: operating frequency range of the sensor is 10Hz - 500Hz; acceleration measurement range is 2m.s-2 - 30m.s-2; sensitivity is about 70 mV/m.s-2; crosstalk coefficient is greater than 22 dB; self-compensation for temperature is available. Eventually the sensor is applied to monitor the vibration state of radiation pump. Seen from its experiments and applications, the sensor has good sensing performances, which can meet a certain requirement for some engineering measurement.展开更多
基金the National Natural Science Foundation of China(Grant No.62105190)the Natural Science Foundation of Shanxi Province of China(Grant No.20210302124268)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province of China(Grant No.2021L285)the Youth Researchof Shanxi University of Finance and Economics(Grant No.QN-202015)。
文摘Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.
基金Project supported by the National Basic Research Program,China(Grant Nos.2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) Chinathe China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
基金National Natural Science Foundation of China(NSFC)(61475065)Natural Science Foundation of Guangdong Province(2015A030313322)
文摘A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating(LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.
基金This work was supported by the National 973 Basic Research and Development Program of China (No. 2003CB314901), the National Natural Science Foundation of China (No. 60377026), the National "863" High Technology Project of China (No. 2003AA311070),
文摘A tunable polarization mode dispersion (PMD) compensator based on strain-ckirped fiber Bragg gratings (FBGs) is proposed. It natures in flexible designing, large tuning range, without using linear or nonlinear chirped phase mask, fast tuning response time, continuously adjustable, all-fiber based, compact, and cheap.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61107087) and the National High Technology Research and Development Program of China (863 Program) (No. SS2012AA010407).
文摘This paper proposed and experimentally demonstrated an all-fiber tunable and programmable bandpass filter using a linearly chirped fiber Bragg grating (CFBG). The center wavelength and spacing of the transmission peaks could be independently tuned via computer. The tunable range is about 18 rim. With this filter we demonstrated a tunable fiber ring laser which has an output power of about -7 dBm, full-width at half- maximum linewidth of-0.017 nm which is limited by the resolution of the optical spectrum analyzer (OSA). Furthermore, a spacing tunable dual-wavelength fiber laser was achieved with the same setup. This all-fiber laser features advantages like simple structure, low cost, flexible and digital tuning capability.
文摘A simple nanostrain direct current (DC) measurement system based on a chirped Bragg grating Fabry-Perot (FP) structure is presented. The FP cavity, formed between the chirped fiber Bragg grating (CFBG) and the fiber end face, presents an aperiodic behavior due to the CFBG. A laser located in the fringe pattern slope is used to interrogate the sensing head. The optical power parameter is analyzed when strain is applied, for long and short period fringe pattern wavelengths, and sensitivities of-2.87 μW/με and-5.48μW/με are respectively obtained. This configuration presents a resolution of 70 ε.
基金the National 863 High Technology Development Program of China (No.2001 AA122012)
文摘A 10 Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4× 167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of ±5GHz.At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.
基金This research was funded by the Key Project of National Science Foundation of China, Award Number: 61290311.
文摘A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three independent vibration sensing units. Each unit uses double matched chirped gratings as sensing elements, and the sensing signal is processed by the edge filtering demodulation method. The structure and principle of the sensor are theoretically analyzed, and its performances are obtained from some experiments and the results are as follows: operating frequency range of the sensor is 10Hz - 500Hz; acceleration measurement range is 2m.s-2 - 30m.s-2; sensitivity is about 70 mV/m.s-2; crosstalk coefficient is greater than 22 dB; self-compensation for temperature is available. Eventually the sensor is applied to monitor the vibration state of radiation pump. Seen from its experiments and applications, the sensor has good sensing performances, which can meet a certain requirement for some engineering measurement.