Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and nu...Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.展开更多
A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg gratin...We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.展开更多
Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient d...Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient dispersion compensation.The result shows that selecting larger chirped value and appropriate qusi guass coupling function can improve the dispersion compensation while ensuring high reflectivity. The concept of "figure of merit" in the microwave field is introduced to quantize the equalizing power of the dispersion compensator.展开更多
The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, ...The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, associated with the phase mask periodicity were observed. However, when phase mask orders other than +1 were absent during fabrication the features at 1552 nm were not evident.展开更多
In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing tech...In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing technique is used for addressing a network of FBG sensors and the time-division multiplexing technique is used for multipoint measurements.In the system,the modulation frequency of 200 MHz is adopted.The range of dectetion is from 0 to 900μεand the resolution is 12με. The time of the sensor response is about 1ns.展开更多
A 2-cm long Bragg grating with reflectivity of~99.95% in B/Ge codoped optical fiber without hydrogen loading was created by phase-mask method with a pulsed KrF excimer laser at 248 nm. DC and AC components of refract...A 2-cm long Bragg grating with reflectivity of~99.95% in B/Ge codoped optical fiber without hydrogen loading was created by phase-mask method with a pulsed KrF excimer laser at 248 nm. DC and AC components of refractive index change were analyzed by monitoring transmission spectrum evolution during the writing process of fiber Bragg grating. The relations of the evolution of center wavelength and reflectivity with number of pulses were respectively investigated.展开更多
The principle of fiber Bragg gratings(FBG) is briefly described. The formation technologies of FBG are systematically given and analyzed. In addition, the experiment is described in detail, e.g.,the phase mask method ...The principle of fiber Bragg gratings(FBG) is briefly described. The formation technologies of FBG are systematically given and analyzed. In addition, the experiment is described in detail, e.g.,the phase mask method is used to write directly the period Bragg gratings into the Ge-doped single mode fiber with KrF excimer UV laser. The results of experiment are also presented and analyzed.展开更多
A stable and broadband microwave photonic phase shifter based on the combined use of a linear chirped fiber Bragg grating and optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. Th...A stable and broadband microwave photonic phase shifter based on the combined use of a linear chirped fiber Bragg grating and optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. The quality of the radio frequency (RF) signal is improved by the spectral separation delay processing. The theoretical fundamentals of the scheme are explained and the phase shift can be controlled linearly by the wave- length of the light source. In the experiment, a full 360° phase shift with a 10 GHz bandwidth can be achieved and tuned dynamically, continuously, and stably.展开更多
A phase-shifted fiber Bragg grating(PS-FBG) based on a microchannel was proposed and realized by combining the pointby-point scanning method with chemical etching. The PS-FBG is composed of a fiber Bragg grating(FBG) ...A phase-shifted fiber Bragg grating(PS-FBG) based on a microchannel was proposed and realized by combining the pointby-point scanning method with chemical etching. The PS-FBG is composed of a fiber Bragg grating(FBG) and a microchannel through the fiber core. The microchannel can introduce phase shift into the FBG. What is more important is that it exposes the fiber core to the external environment. The phase shift peak is sensitive to the liquid refractive index, and it shows a linear refractive index response wavelength and intensity sensitivity of 2.526 nm/RIU and-111 d B/RIU, respectively.Therefore, such gratings can be used as sensors or tunable filters.展开更多
Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are an...Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).展开更多
A n-phase-shifted fiber Bragg grating theoretical model is established, and the effects of an asymmetric and symmetrical perturbation field on a phase-shifted fiber Bragg grating are investigated in this paper. The tr...A n-phase-shifted fiber Bragg grating theoretical model is established, and the effects of an asymmetric and symmetrical perturbation field on a phase-shifted fiber Bragg grating are investigated in this paper. The trends of wavelength shifting caused by effective refraction index of phase shift grating in symmetric and asymmetric acoustic field are investigated in detail. Then, the fiber laser acoustic sensors packaged in asymmetric and symmetrical structures are designed and tested, respectively. The results show that the acoustic response of the wavelength of the distributed feedback (DFB) fiber laser (FL) in an asymmetric packaging structure is much more sensitive than in that in the symmetrical structure. The sensor packaged in the asymmetrical structure has a better low frequency (0Hz-500Hz) performance and a higher sensitivity than that in the symmetrical structure, and the sensitivity is improved about 15dB in average and 32.7dB in maximum. It provides a new method to improve the sensitivity of the fiber acoustic sensor.展开更多
基金the National Natural Science Foundation of China(Grant No.62105190)the Natural Science Foundation of Shanxi Province of China(Grant No.20210302124268)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province of China(Grant No.2021L285)the Youth Researchof Shanxi University of Finance and Economics(Grant No.QN-202015)。
文摘Optical chaos has attracted widespread attention owing to its complex dynamic behaviors.However,the time delay signature(TDS)caused by the external cavity mode reduces the complexity of optical chaos.We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating(CFBG)for eliminating the TDS of laser chaos in this work.The critical dispersion,as a function of relaxation frequency and bandwidth of the optical spectrum,is found through extensive dynamics simulations.It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion.In addition,the influence of dispersive feedback light and output light from a laser is investigated.These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
基金Project supported by the National Basic Research Program,China(Grant Nos.2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) Chinathe China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
文摘Based on the general theory of linear Chirped Bragg fiber grating, this paper discusses some parameters including different chirped values and quasi gauss coupling function relating with the reflectivity coefficient dispersion compensation.The result shows that selecting larger chirped value and appropriate qusi guass coupling function can improve the dispersion compensation while ensuring high reflectivity. The concept of "figure of merit" in the microwave field is introduced to quantize the equalizing power of the dispersion compensator.
基金supported by the Australian Research Council under Grant No. DP0773999.
文摘The use of a phase mask with 536 nm uniform pitch allowed the fabrication of a fiber Bragg grating for use at a Bragg wavelength of 785 nm. Reflection and transmission features at 1552 nm, twice the Bragg wavelength, associated with the phase mask periodicity were observed. However, when phase mask orders other than +1 were absent during fabrication the features at 1552 nm were not evident.
文摘In this paper,we propose the novel system of multipoint measurement.The sensors of measurements are chirped Bragg grating and the interrogation of sensors is sub-carrier phase.The wavelength division multiplexing technique is used for addressing a network of FBG sensors and the time-division multiplexing technique is used for multipoint measurements.In the system,the modulation frequency of 200 MHz is adopted.The range of dectetion is from 0 to 900μεand the resolution is 12με. The time of the sensor response is about 1ns.
基金National Basic Research Program of China (2003CB314906)
文摘A 2-cm long Bragg grating with reflectivity of~99.95% in B/Ge codoped optical fiber without hydrogen loading was created by phase-mask method with a pulsed KrF excimer laser at 248 nm. DC and AC components of refractive index change were analyzed by monitoring transmission spectrum evolution during the writing process of fiber Bragg grating. The relations of the evolution of center wavelength and reflectivity with number of pulses were respectively investigated.
文摘The principle of fiber Bragg gratings(FBG) is briefly described. The formation technologies of FBG are systematically given and analyzed. In addition, the experiment is described in detail, e.g.,the phase mask method is used to write directly the period Bragg gratings into the Ge-doped single mode fiber with KrF excimer UV laser. The results of experiment are also presented and analyzed.
基金supported by the National "973" Program of China(No.2012CB315604)the Natural Science Foundation of China(Nos.61575028 and 61331008)+2 种基金the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program (No.2011065)the Open Fund of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)
文摘A stable and broadband microwave photonic phase shifter based on the combined use of a linear chirped fiber Bragg grating and optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. The quality of the radio frequency (RF) signal is improved by the spectral separation delay processing. The theoretical fundamentals of the scheme are explained and the phase shift can be controlled linearly by the wave- length of the light source. In the experiment, a full 360° phase shift with a 10 GHz bandwidth can be achieved and tuned dynamically, continuously, and stably.
基金supported by the National Natural Science Foundation of China (Nos. 51875584, 51935013, and 51875585)the National Key R&D Program of China (Nos. 2018YFB1107803 and 2017YFB1104800)。
文摘A phase-shifted fiber Bragg grating(PS-FBG) based on a microchannel was proposed and realized by combining the pointby-point scanning method with chemical etching. The PS-FBG is composed of a fiber Bragg grating(FBG) and a microchannel through the fiber core. The microchannel can introduce phase shift into the FBG. What is more important is that it exposes the fiber core to the external environment. The phase shift peak is sensitive to the liquid refractive index, and it shows a linear refractive index response wavelength and intensity sensitivity of 2.526 nm/RIU and-111 d B/RIU, respectively.Therefore, such gratings can be used as sensors or tunable filters.
基金supported by the Foundation of Beijing Municipal Committee of CPC Organization Department(No.2012D005002000001)the Talents of North China University of Technology(No.CCXZ201307)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201304001)
文摘Based on the transfer matrix method,a detailed theoretical and numerical study on double-phase-shifted fiber Bragg grating(FBG)is investigated.Temporal responses of the double-phase-shifted FBG to optical pulse are analyzed and the influence of the two phase-shifts’position on the reflected output pulse is evaluated.Results demonstrate that very different temporal pulse waveforms can be achieved by adjusting the length ratio(α=L2/L1).Specifically,a transform-limited Gaussian input optical pulse can be shaped into flat-top square pulse(α=1.81)or two identical optical pulse sequences(α=1.93).
基金This work was supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2016FB03), the National Natural Science Foundation of China (Grant No. 61705121& No.21603122), and the Ph.D. Foundation of Shandong Jianzhu University (Grant No. XNBS1535).
文摘A n-phase-shifted fiber Bragg grating theoretical model is established, and the effects of an asymmetric and symmetrical perturbation field on a phase-shifted fiber Bragg grating are investigated in this paper. The trends of wavelength shifting caused by effective refraction index of phase shift grating in symmetric and asymmetric acoustic field are investigated in detail. Then, the fiber laser acoustic sensors packaged in asymmetric and symmetrical structures are designed and tested, respectively. The results show that the acoustic response of the wavelength of the distributed feedback (DFB) fiber laser (FL) in an asymmetric packaging structure is much more sensitive than in that in the symmetrical structure. The sensor packaged in the asymmetrical structure has a better low frequency (0Hz-500Hz) performance and a higher sensitivity than that in the symmetrical structure, and the sensitivity is improved about 15dB in average and 32.7dB in maximum. It provides a new method to improve the sensitivity of the fiber acoustic sensor.