Atherosclerosis is driven both by hyperlipidemia and inflammation. Chitin oligosaccharides(NACOS) have shown pharmacological effects on multiple diseases via hypolipidemic and/or anti-inflammatory activities. The pres...Atherosclerosis is driven both by hyperlipidemia and inflammation. Chitin oligosaccharides(NACOS) have shown pharmacological effects on multiple diseases via hypolipidemic and/or anti-inflammatory activities. The present study aims to evaluate whether NACOS treatment can prevent atherosclerosis induced by a highfat-diet(HFD) in Apolipoprotein E-knockout(Apo E;) mice. Results showed that 300 and 900 mg/kg b.w./day NACOS supplementation for 14 weeks significantly decreased atherosclerotic lesions up to 45% and 67% in compared with the HFD(P < 0.05), as measured in the valve area of the aortic root. Further, NACOS supplementation significantly reduced the serum hyperlipidemia and circulating proinflammatory cytokines including interleukin-1β, interleukin-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α. NACOS decreased the hepatic Hmgcr to reduce cholesterol synthesis, activated the genes involved in reverse cholesterol transport to enhance cholesterol efflux and excretion, and reduced the intestinal Npc1L1 to lower cholesterol absorption. Additionally, NACOS enhanced cecum short chain fatty acids production and intestinal integrity. Thus, NACOS supplementation ameliorated atherosclerosis via altering lipid metabolism and reducing inflammation. These findings indicate that NACOS may be a potential functional food material for attenuating atherosclerosis development.展开更多
Chitin oligosaccharides(CHOS),high-value-added oligomers linked by N-acetyl-d-glucosamine(GlcNAc,NAG),and a small amount of d-glucosamine(GlcN,GA),have aroused increasing interest due to their excellent biological pro...Chitin oligosaccharides(CHOS),high-value-added oligomers linked by N-acetyl-d-glucosamine(GlcNAc,NAG),and a small amount of d-glucosamine(GlcN,GA),have aroused increasing interest due to their excellent biological properties,including antibacterial,anti-inflammatory,and immunoprotective activities,and intestinal regulation.The efficient production and utilization of CHOS with high performance can solve problems from chitin as biowaste.However,the large-scale production of well-defined CHOS has not been fully accomplished due to the limited biotechnology and separation methods,thus impeding the research on their biological functions as well as their accurate applications.In this review,we comprehensively summarize the current preparation methods of CHOS,including the chemical,physical,enzymatic and biosynthetic methods.The advantages and disadvantages of the methods are discussed in terms of efficiency,economy,and environmental effects.Furthermore,the applications of CHOS in the food industry and their contributions to human health based on their excellent bioactivities are expounded.It is hoped that this review will help in providing new insights into the production of CHOS with high precision,and support the application of CHOS in serving the food industry as nutritional supplements or foods for special medical purposes.展开更多
基金financially supported by the National Science Found for Excellent Young Scholars (No. 31822037)National Natural Science Foundation of China (No. 21576283)。
文摘Atherosclerosis is driven both by hyperlipidemia and inflammation. Chitin oligosaccharides(NACOS) have shown pharmacological effects on multiple diseases via hypolipidemic and/or anti-inflammatory activities. The present study aims to evaluate whether NACOS treatment can prevent atherosclerosis induced by a highfat-diet(HFD) in Apolipoprotein E-knockout(Apo E;) mice. Results showed that 300 and 900 mg/kg b.w./day NACOS supplementation for 14 weeks significantly decreased atherosclerotic lesions up to 45% and 67% in compared with the HFD(P < 0.05), as measured in the valve area of the aortic root. Further, NACOS supplementation significantly reduced the serum hyperlipidemia and circulating proinflammatory cytokines including interleukin-1β, interleukin-6, monocyte chemoattractant protein-1 and tumor necrosis factor-α. NACOS decreased the hepatic Hmgcr to reduce cholesterol synthesis, activated the genes involved in reverse cholesterol transport to enhance cholesterol efflux and excretion, and reduced the intestinal Npc1L1 to lower cholesterol absorption. Additionally, NACOS enhanced cecum short chain fatty acids production and intestinal integrity. Thus, NACOS supplementation ameliorated atherosclerosis via altering lipid metabolism and reducing inflammation. These findings indicate that NACOS may be a potential functional food material for attenuating atherosclerosis development.
基金the National Key R&D Program of China(2019YFD0901805)the 111 Project(B18022),the Fundamental Research Funds for the Central Universities,the Open Project Funding of the State Key Laboratory of Bioreactor Engineering,ECUST(ZDXM2019)Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism(Shanghai Municipal Education Commission).
文摘Chitin oligosaccharides(CHOS),high-value-added oligomers linked by N-acetyl-d-glucosamine(GlcNAc,NAG),and a small amount of d-glucosamine(GlcN,GA),have aroused increasing interest due to their excellent biological properties,including antibacterial,anti-inflammatory,and immunoprotective activities,and intestinal regulation.The efficient production and utilization of CHOS with high performance can solve problems from chitin as biowaste.However,the large-scale production of well-defined CHOS has not been fully accomplished due to the limited biotechnology and separation methods,thus impeding the research on their biological functions as well as their accurate applications.In this review,we comprehensively summarize the current preparation methods of CHOS,including the chemical,physical,enzymatic and biosynthetic methods.The advantages and disadvantages of the methods are discussed in terms of efficiency,economy,and environmental effects.Furthermore,the applications of CHOS in the food industry and their contributions to human health based on their excellent bioactivities are expounded.It is hoped that this review will help in providing new insights into the production of CHOS with high precision,and support the application of CHOS in serving the food industry as nutritional supplements or foods for special medical purposes.