期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ultrasound imaging of chitosan nerve conduits that bridge sciatic nerve defects in rats 被引量:1
1
作者 Xiaoyang Chen Yifei Yin +4 位作者 Tingting Zhang Yahong Zhao Yumin Yang Xiaomei Yu Hongkui Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第14期1386-1388,共3页
The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al.,... The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al., 2014; Zhu and Lou, 2014). With advances in tissue engineering and biomaterials, tissue-engineered nerve conduits with various biomaterials and structures, such as collagen and chitosan nerve conduits, have already been used in the clinic as alternatives to autologous nerve in the repair of peripheral nerve injury (Wang et al., 2012; Svizenska et al., 2013; Eppenberger et al., 2014; Gu et al., 2014; Koudehi et al., 2014; MoyaDiaz et al., 2014; Novajra et al., 2014; Okamoto et al., 2014; Shea et al., 2014; Singh et al., 2014; Tamaki et al., 2014; Yu et al., 2014). Therefore, new simple and effective methods 展开更多
关键词 Ultrasound imaging of chitosan nerve conduits that bridge sciatic nerve defects in rats
下载PDF
Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning 被引量:7
2
作者 Hong-kui Wang Ya-xian Wang +5 位作者 Cheng-bin Xue Zhen-mei-yu Li Jing Huang Ya-hong Zhao Yu-min Yang Xiao-song Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期168-173,共6页
Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineere... Angiogenesis is a key process in regenerative medicine generally, as well as in the specific field of nerve regeneration. However, no convenient and objective method for evaluating the angiogenesis of tissue-engineered nerves has been reported. In this study, tissue-engineered nerves were constructed in vitro using Schwann cells differentiated from rat skin-derived precursors as supporting cells and chitosan nerve conduits combined with silk fibroin fibers as scaffolds to bridge 10-mm sciatic nerve defects in rats. Four weeks after surgery, three-dimensional blood vessel reconstructions were made through MICROFIL perfusion and micro-CT scanning, and parameter analysis of the tissue-engineered nerves was performed. New blood vessels grew into the tissue-engineered nerves from three main directions: the proximal end, the distal end, and the middle. The parameter analysis of the three-dimensional blood vessel images yielded several parameters, including the number, diameter, connection, and spatial distribution of blood vessels. The new blood vessels were mainly capillaries and microvessels, with diameters ranging from 9 to 301 μm. The blood vessels with diameters from 27 to 155 μm accounted for 82.84% of the new vessels. The microvessels in the tissue-engineered nerves implanted in vivo were relatively well-identified using the MICROFIL perfusion and micro-CT scanning method, which allows the evaluation and comparison of differences and changes of angiogenesis in tissue-engineered nerves implanted in vivo. 展开更多
关键词 nerve regeneration angiogenesis micro-CT MICROFIL perfusion three-dimensional reconstruction tissue-engineered nerve skin-derived precursor chitosan nerve conduit Schwann cell neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部