Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. T...The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).展开更多
Hydrogel has high water content and structural similarity with natural extracellular matrix.So it has been widely studied and applied in the field of biomedicine.In order to further develop multifunctional hydrogels,w...Hydrogel has high water content and structural similarity with natural extracellular matrix.So it has been widely studied and applied in the field of biomedicine.In order to further develop multifunctional hydrogels,we prepared mixed gels with antiultraviolet properties.This study found that the addition of polysaccharides and polyphenols was beneficial to the rheological,me-chanical properties,and biological activity of the protein.Chitosan(CS)could significantly improve the viscoelasticity,hardness,gel strength,thermal stability and crystallinity of gelatin.Interestingly,the addition of gallic acid(GA)could not only provide significant cross-linking effect,improve gel properties and microstructure,but also improve the UV resistance of the mixed gel.展开更多
The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS...The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS gel beads by dual crosslinking: the ionic gelation and the polyelectrolyte complexation. The preparation procedure was that the weight ratio of SA(2%, m/v) to HA(2%, m/v) was kept at 2:1, then the mixture was dripped into the Ca^2+ solution for ion-crosslinking, and finally polyelectrolyte crosslinked with 2% low molecular weight CS(LMW-CS) for 1.5 hours. The optimal formulation was achieved by adjusting the concentration and the weight ratio of SA, HA and LMW-CS. Due to the incorporation of HA and LMWCS, the swelling ratio of the beads at pH 7.4 was increased up to 120, and the time for the maximum swelling degree was prolonged to 7.5 h. The swelling behavior was obviously improved compared to the pure SA/Ca^2+ system. The preliminary results clearly suggest that the SA/HA/CS gel beads may be a potential candidate for biomedical delivery vehicles.展开更多
Recently, potential applications for β-chitosan (β-CS) have been examined. In the present study, calcium-induced alginate gel beads (Alg-Ca) containing weak acid salts of β-CS were prepared and examined with regard...Recently, potential applications for β-chitosan (β-CS) have been examined. In the present study, calcium-induced alginate gel beads (Alg-Ca) containing weak acid salts of β-CS were prepared and examined with regard to their ability to adsorb bile acids in vitro. More than 70% of taurocholate dissolved in solution was taken up by Alg-Ca containing 100 mg β-CS, sim. ilar to the degree of uptake observed with Alg-Ca containing α-CS salt. The adsorption of bile acid was affected by the absolute amount of β-CS and/or the acid concentration of the preparation. A secondary bile acid, taurodeoxycholate, was also adsorbed by Alg-Ca containing weak acid salts of β-CS. Therefore, β-CS might be used to adsorb bile acids within the gastrointestinal tract in the same manner as an anion-exchange resin, and thus serve as a complementary means by which to prevent hyperlipidemia.展开更多
In situ forming hydrogels with simple sol–gel transition are more practicable as injectable hydrogels for drug delivery and tissue regeneration. State-of-the-art in situ gelling systems can easily and efficiently be ...In situ forming hydrogels with simple sol–gel transition are more practicable as injectable hydrogels for drug delivery and tissue regeneration. State-of-the-art in situ gelling systems can easily and efficiently be formed by different mechanisms in situ. Chitosan is a kind of natural polysaccharide that is widely exploited for biomedical applications due to its good biocompatibility, low immunogenicity and specific biological activities. Chitosan-based in situ gelling systems have already gained much attention as smart biomaterials in the development of several biomedical applications, such as for drug delivery systems and regeneration medicine. Herein, we review the typical in situ gelling systems based on chitosan and mechanisms involved in hydrogel forming, and report advances of chitosan-based in situ gels for the applications in drug delivery and tissue regeneration. Finally, development prospects of in situ forming hydrogels based on chitosan are also discussed in brief.展开更多
Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric cari...Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric caries admitted to the hospital from April 2021 to April 2023,which were divided into two groups by the randomized table method.The control group(n=56)received the traditional dental drilling treatment method,and the observation group(n=57)applied Carisolv minimally invasive gel for treatment.The pain sensitivity and clinical efficacy as well as the emotions and adherence of the children were compared between the two groups.Results:The emotional score(ES)of children in the observation group was significantly lower than that of the control group,and the Frankl Adherence Scale score was significantly higher than that of the control group,P<0.05;the pain sensitivity of children in the observation group was better than that of the control group,and the total clinical efficacy rate of children in the observation group was significantly higher than that of the control group,P<0.05.Conclusion:Carisolv minimally invasive gel has considerable efficacy in the treatment of pediatric caries,and it can alleviate pain and improve children’s emotional state and adherence to the program.Thus,it is suitable for wide clinical applications.展开更多
Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to...Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to an external stimulus, for example, to heat, water presence, light, etc. In this paper, the second definition will be approached. Hydrogels are crosslinked materials that can absorb a big amount of water. They generally can be considered as smart materials once they exhibit sensibility to external stimuli like to pH variation, as will be approached in this paper. Thus, chitosan/polyvinylpyrrolidone hydrogels of three different ratios between these two polymers (1:1, 7:3 and 3:7) were synthesized and putted in aqueous solution with different pHs. The pH was adjusted adding drops of NaOH and HCl, slowly. After the collection of results and in order to understand the phenomena in a visual way, models of the molecules were also elaborated using the Avogadro software. Therefore, it was possible to realize that the greater the ratio of chitosan in the hydrogel, the greater its sensitivity to pH. Such characteristic is associated with the amino (-NH2) groups in it structure, which are capable of protonating and deprotonating (depending of the pH), generating charges under the chemical structure of the material, which will expand its volume in order to minimize the repulsion between charges. In addition, it was also noted that the hydrogel expansion is inversely proportional to the pH increase. By practical tests, it was possible to conclude that chitosan/PVP hydrogel with ratio 7:3 is the most interesting once it presented a greater quantity of chitosan in its composition, what implied in more rigidity than the others and greater ease of handling, resulting in more reliable results. This hydrogel also showed higher sensitivity to pH.展开更多
A new kind of biodegradable pH-sensitive drug delivery system was developed via chitosan-albumin conjugate hydrogel. Through changing the feeding modes of reactants, two types of hydrogels(comb-type and reticular-typ...A new kind of biodegradable pH-sensitive drug delivery system was developed via chitosan-albumin conjugate hydrogel. Through changing the feeding modes of reactants, two types of hydrogels(comb-type and reticular-type) were synthesized by amidation reactions between 6-O-succinoylated N-phthaloyl chitosan and albumin. The structures and morphologies of the hydrogels were characterized by SEM. And their water swelling capacity, drug loading and releasing properties at different pH values were also investigated. It was found that the comb-type of hydrogels with looser space construction had better water swelling ratio(more than 400% of its original mass) than the reticular-type of ones did(about 180% of its original mass). In vitro release experiments of Rifampicin show that the hydrogels provided the controlled release of the entrapped drug for more than 50 h. The drug release rates of both types of hydrogels under acidic condition were lower than those under neutral or basic condition. The introduction of albumin not only improved the hydrophilicity of chitosan, but also provided the possibility of the carrier system combining other biologically active materials more easily to fulfill the delivery and therapy functions.展开更多
Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm...Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm and CMCH,temperature,pH and ionic strength on the swelling ratio of PNIPAAm/CMCH hydrogels were studied.The results show that the addition of CMCH shifts the lower critical solution temperature (LCST) of the PNIPAAm hydrogel to higher temperature.The PNIPAAm/CMCH hydrogel displays not only pH-and thermo-sensitivity,but also ion-sensitivity.Differential scanning calorimetry (DSC) was applied for the determination of the LCST of the hydrogel.展开更多
Sucrose ester( SE) was fixed on surface of poly( ethylene terephthalate)( PET) fibers to improve surface activity. Chitosan( CS) was used to graft onto pretreated PET fibers by sol-gel method. The transformations of s...Sucrose ester( SE) was fixed on surface of poly( ethylene terephthalate)( PET) fibers to improve surface activity. Chitosan( CS) was used to graft onto pretreated PET fibers by sol-gel method. The transformations of surface chemical structure,microcosmic morphology and thermodynamic property were investigated by Fourier transform infrared spectroscopy( FTIR),X-ray photoelectron spectroscopy( XPS), scanning electron microscope( SEM), X-ray diffraction technique( XRD), and thermo gravimetric analysis( TGA),respectively. The wettability and antistatic property of PET fiber were significantly improved after modification by SE and CS.展开更多
In this paper,chitosan was used as a macromolecular cross-linker to prepare high-strength poly(methacrylic acid)hydrogels.The effects of chitosan content and pH on the Swelling Behavior were studied.The swelling rate ...In this paper,chitosan was used as a macromolecular cross-linker to prepare high-strength poly(methacrylic acid)hydrogels.The effects of chitosan content and pH on the Swelling Behavior were studied.The swelling rate and the equilibrium swelling ratio decrease with increase of chitosan.Effect of pH on the equilibrium swelling ratio indicates pH-sensitivity of the hydrogels.展开更多
Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has...Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has been varied from 60 to 90 wt %(at fixed acetone/tetramethoxysilane ratio of 50). Also, for a fixed TNT content of 75 wt %, the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent. The resultant TNT–silica gel composites have been characterized using scanning electron microscopy, thermal analysis, small angle X-ray scattering and surface area analysis techniques. Impact sensitivity studies were carried out using Fall Hammer Impact Test. The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.展开更多
Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adip...Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adipose-derived stem cells (ADSCs) are multipotent and can be differentiated toward nucleus pulposus (NP)-Iike cells.A hypoxic environment may be important for differentiation to NP-like cells because the intervertebral disc is an avascular tissue.Hence,we investigated the induction effects of hypoxia and an injectable 3D chitosan-alginate (C/A) gel scaffold on ADSCs.Methods The C/A gel scaffold consisted of medical-grade chitosan and alginate.Gel porosity was calculated by liquid displacement method.Pore microstructure was analyzed by light and scanning electron microscopy.ADSCs were isolated and cultured by conventional methods.Passage 2 BrdU-labeled ADSCs were co-cultured with the C/A gel.ADSCs were divided into three groups (control,normoxia-induced,and hypoxia-induced groups).In the control group,cells were cultured in 10% FBS/DMEM.Hypoxia-induced and normoxia-induced groups were induced by adding transforming growth factor-β1,dexamethasone,vitamin C,sodium pyruvate,proline,bone morphogenetic protein-7,and 1% ITS-plus to the culture medium and maintaining in 2% and 20% O2,respectively.Histological and morphological changes were observed by light and electron microscopy.ADSCs were characterized by flow cytometry.Cell viability was investigated by BrdU incorporation.Proteoglycan and type Ⅱ collagen were measured by safranin O staining and the Sicool method,respectively.mRNA expression of hypoxia-inducing factor-1α (HIF-1α),aggrecan,and Type Ⅱ collagen was determined by reverse transcription-polymerase chain reaction.Results C/A gels had porous exterior surfaces with 80.57% porosity and 50-200 μm pore size.Flow cytometric analysis of passage 2 rabbit ADSCs showed high CD90 expression,while CD45 expression was very low.The morphology of induced ADSCs resembled that of NP cells.BrdU immunofluorescence showed that most ADSCs survived and proliferated in the C/A gel scaffold.Scanning electron microscopy showed that ADSCs grew well in the C/A gel scaffold.ADSCs in the C/A gel scaffold were positive for safranin O staining.Hypoxia-induced and normoxia-induced groups produced more proteoglycan and Type Ⅱ collagen than the control group (P <0.05).Proteoglycan and Type Ⅱ collagen levels in the hypoxia-induced group were higher than those in the normoxia-induced group (P <0.05).Compared with the control group,higher mRNA expression of HIF-1α,aggrecan,and Type Ⅱ collagen was detected in hypoxia-induced and normoxiainduced groups (P <0.05).Expression of these genes in the hypoxia-induced group was significantly higher than that in the normoxia-induced group (P <0.05).Conclusion ADSCs grow well in C/A gel scaffolds and differentiate toward NP-like cells that produce the same extracellular matrix as that of NP cells under certain induction conditions,which is promoted in a hypoxic state.展开更多
This paper reports a new method to prepare chitosan membrane which could be used as a biomedical material. Addition of a fixation agent composed of alcohol, glycerol and potassium hydroxide can accelerate the sol-gel ...This paper reports a new method to prepare chitosan membrane which could be used as a biomedical material. Addition of a fixation agent composed of alcohol, glycerol and potassium hydroxide can accelerate the sol-gel transformation process and hence shorten the preparation period. The present method takes about 6 h to get a flexible membrane with fine appearance, The physical and biological properties of the membrane were also investigated and compared with the membrane prepared by conventional method.展开更多
Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,m...Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration.展开更多
Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldru...Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.展开更多
Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different conc...Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.展开更多
objective:The effects of different chitosan on preventing traumatic peritoneal adhesion in rats was studied in this paper. METHODS: 96 SD rats with injured vermiform process were randomly divided into 4 groups as foll...objective:The effects of different chitosan on preventing traumatic peritoneal adhesion in rats was studied in this paper. METHODS: 96 SD rats with injured vermiform process were randomly divided into 4 groups as follows: group A without any treatment as control, group B treated with chitosan gel, group C treated with pure chitosan film and group D treated with chiston film containing 50% gelatin. 2 and 4 weeks after surgery, 12 rats in each group were respectively belly opened to observe chitosan degradation and evaluate peritoneal adhesion, and the adhesive vermiform processes tissues were histopathologically observed. RESULTS: 1.Degradation in the group D was faster than that in the group C but slower than that in the group B. 2. 2 weeks after surgery the adhesion in the group B was milder than that in the control group(goup A) (P<0.05), but that in the group C and D (both P<0.05) were more severe than that in the control group . 3. 4 weeks after surgery , the adhesion in the group B was milder than that in the control group (P<0.05), but that in the group C and D (both P<0.05) were more severe than that in the control group , whereas, there was no significant difference between adhesion in the group C and group D (P>0.05). 4.Histopathological examinaiton indicated that: 2 weeks after surgery ,inflammatory cell infiltration and fibroplastic proliferation dominated in local lesion and the response was most severe on the serous coat, furthermore, the response in the control group was more severe than that in the group B, but milder than that in the group C and D; 4 weeks after surgery, fibroplastic proliferation dominated in local lesion in each group , moreover, the response in the control group was more severe than that in the group B but milder than that in the group C and D. What’s more, integrated fibrous membrane formed around implanted materials in the group C and D, and the fibrous membranes were thinner in the group C than that in the group D. CONCLUSION: 1.Chitosan gel has perfect effect in protecting traumatic peritoneal adhesion in rats. 2.Pure chitosan film could exacerbate peritoneal adhesion and chitosan containing gelatin could exacerbate peritoneal adhesion further.展开更多
To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective b...To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金Sponsored by a Girant-in-Aid from the Ministry of Education of China.
文摘The procedure for preparing a new type of uniform and porous chitosan gel from citric acid medium is described. Its swelling behavior in different media was compared with those of the gels prepared by other methods. The ultrastructure of the xerogel prepared from citric acid was characterized using electron microscopy (SEM).
基金supported by the National Natural Sci-ence Foundation of China(No.31922072)the China Agri-culture Research System(No.CARS-48)+1 种基金the Fundamen-tal Research Funds for the Central Universities(No.201941002)the Taishan Scholar Project of Shandong Province(No.tsqn201812020).
文摘Hydrogel has high water content and structural similarity with natural extracellular matrix.So it has been widely studied and applied in the field of biomedicine.In order to further develop multifunctional hydrogels,we prepared mixed gels with antiultraviolet properties.This study found that the addition of polysaccharides and polyphenols was beneficial to the rheological,me-chanical properties,and biological activity of the protein.Chitosan(CS)could significantly improve the viscoelasticity,hardness,gel strength,thermal stability and crystallinity of gelatin.Interestingly,the addition of gallic acid(GA)could not only provide significant cross-linking effect,improve gel properties and microstructure,but also improve the UV resistance of the mixed gel.
基金Funded by the National Natural Science Foundation of China(No.81401510)
文摘The aim of this study was to fabricate composite gel beads based on natural polysaccharides. Hyaluronic acid(HA) and Chitosan(CS) were successfully admixed with Ca^2+/alginate(SA) gel system to produce SA/HA/CS gel beads by dual crosslinking: the ionic gelation and the polyelectrolyte complexation. The preparation procedure was that the weight ratio of SA(2%, m/v) to HA(2%, m/v) was kept at 2:1, then the mixture was dripped into the Ca^2+ solution for ion-crosslinking, and finally polyelectrolyte crosslinked with 2% low molecular weight CS(LMW-CS) for 1.5 hours. The optimal formulation was achieved by adjusting the concentration and the weight ratio of SA, HA and LMW-CS. Due to the incorporation of HA and LMWCS, the swelling ratio of the beads at pH 7.4 was increased up to 120, and the time for the maximum swelling degree was prolonged to 7.5 h. The swelling behavior was obviously improved compared to the pure SA/Ca^2+ system. The preliminary results clearly suggest that the SA/HA/CS gel beads may be a potential candidate for biomedical delivery vehicles.
文摘Recently, potential applications for β-chitosan (β-CS) have been examined. In the present study, calcium-induced alginate gel beads (Alg-Ca) containing weak acid salts of β-CS were prepared and examined with regard to their ability to adsorb bile acids in vitro. More than 70% of taurocholate dissolved in solution was taken up by Alg-Ca containing 100 mg β-CS, sim. ilar to the degree of uptake observed with Alg-Ca containing α-CS salt. The adsorption of bile acid was affected by the absolute amount of β-CS and/or the acid concentration of the preparation. A secondary bile acid, taurodeoxycholate, was also adsorbed by Alg-Ca containing weak acid salts of β-CS. Therefore, β-CS might be used to adsorb bile acids within the gastrointestinal tract in the same manner as an anion-exchange resin, and thus serve as a complementary means by which to prevent hyperlipidemia.
文摘In situ forming hydrogels with simple sol–gel transition are more practicable as injectable hydrogels for drug delivery and tissue regeneration. State-of-the-art in situ gelling systems can easily and efficiently be formed by different mechanisms in situ. Chitosan is a kind of natural polysaccharide that is widely exploited for biomedical applications due to its good biocompatibility, low immunogenicity and specific biological activities. Chitosan-based in situ gelling systems have already gained much attention as smart biomaterials in the development of several biomedical applications, such as for drug delivery systems and regeneration medicine. Herein, we review the typical in situ gelling systems based on chitosan and mechanisms involved in hydrogel forming, and report advances of chitosan-based in situ gels for the applications in drug delivery and tissue regeneration. Finally, development prospects of in situ forming hydrogels based on chitosan are also discussed in brief.
文摘Objective:To study the clinical effect of Carisolv minimally invasive gel in the treatment of pediatric dental caries and its effect on pain.Methods:The research subjects of this paper were 113 cases of pediatric caries admitted to the hospital from April 2021 to April 2023,which were divided into two groups by the randomized table method.The control group(n=56)received the traditional dental drilling treatment method,and the observation group(n=57)applied Carisolv minimally invasive gel for treatment.The pain sensitivity and clinical efficacy as well as the emotions and adherence of the children were compared between the two groups.Results:The emotional score(ES)of children in the observation group was significantly lower than that of the control group,and the Frankl Adherence Scale score was significantly higher than that of the control group,P<0.05;the pain sensitivity of children in the observation group was better than that of the control group,and the total clinical efficacy rate of children in the observation group was significantly higher than that of the control group,P<0.05.Conclusion:Carisolv minimally invasive gel has considerable efficacy in the treatment of pediatric caries,and it can alleviate pain and improve children’s emotional state and adherence to the program.Thus,it is suitable for wide clinical applications.
文摘Smart material can be defined as a material that can dock or convert energy between physical domains or as a material that can generate a response, in their characteristics, properties or geometries, when submitted to an external stimulus, for example, to heat, water presence, light, etc. In this paper, the second definition will be approached. Hydrogels are crosslinked materials that can absorb a big amount of water. They generally can be considered as smart materials once they exhibit sensibility to external stimuli like to pH variation, as will be approached in this paper. Thus, chitosan/polyvinylpyrrolidone hydrogels of three different ratios between these two polymers (1:1, 7:3 and 3:7) were synthesized and putted in aqueous solution with different pHs. The pH was adjusted adding drops of NaOH and HCl, slowly. After the collection of results and in order to understand the phenomena in a visual way, models of the molecules were also elaborated using the Avogadro software. Therefore, it was possible to realize that the greater the ratio of chitosan in the hydrogel, the greater its sensitivity to pH. Such characteristic is associated with the amino (-NH2) groups in it structure, which are capable of protonating and deprotonating (depending of the pH), generating charges under the chemical structure of the material, which will expand its volume in order to minimize the repulsion between charges. In addition, it was also noted that the hydrogel expansion is inversely proportional to the pH increase. By practical tests, it was possible to conclude that chitosan/PVP hydrogel with ratio 7:3 is the most interesting once it presented a greater quantity of chitosan in its composition, what implied in more rigidity than the others and greater ease of handling, resulting in more reliable results. This hydrogel also showed higher sensitivity to pH.
基金Supported by the National Basic Research Program of China(No.2009CB930102)the National High-Tech Research and Development Program of China(No.2007AA03Z535)+4 种基金the National Natural Science Foundation of China(Nos.20774094 20874097)the "100 Talents Program" of the Chinese Academy of Sciences(No.KGCX2-YW-802)the Project of Jilin Provincial Science and Technology Department China(No.20082104).
文摘A new kind of biodegradable pH-sensitive drug delivery system was developed via chitosan-albumin conjugate hydrogel. Through changing the feeding modes of reactants, two types of hydrogels(comb-type and reticular-type) were synthesized by amidation reactions between 6-O-succinoylated N-phthaloyl chitosan and albumin. The structures and morphologies of the hydrogels were characterized by SEM. And their water swelling capacity, drug loading and releasing properties at different pH values were also investigated. It was found that the comb-type of hydrogels with looser space construction had better water swelling ratio(more than 400% of its original mass) than the reticular-type of ones did(about 180% of its original mass). In vitro release experiments of Rifampicin show that the hydrogels provided the controlled release of the entrapped drug for more than 50 h. The drug release rates of both types of hydrogels under acidic condition were lower than those under neutral or basic condition. The introduction of albumin not only improved the hydrophilicity of chitosan, but also provided the possibility of the carrier system combining other biologically active materials more easily to fulfill the delivery and therapy functions.
基金supported by the Shanghai Nano-material Project Foundation (Grant No.0452NM024)the Shanghai Leading Academic Discipline Project (Grant No.T0105)
文摘Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm and CMCH,temperature,pH and ionic strength on the swelling ratio of PNIPAAm/CMCH hydrogels were studied.The results show that the addition of CMCH shifts the lower critical solution temperature (LCST) of the PNIPAAm hydrogel to higher temperature.The PNIPAAm/CMCH hydrogel displays not only pH-and thermo-sensitivity,but also ion-sensitivity.Differential scanning calorimetry (DSC) was applied for the determination of the LCST of the hydrogel.
文摘Sucrose ester( SE) was fixed on surface of poly( ethylene terephthalate)( PET) fibers to improve surface activity. Chitosan( CS) was used to graft onto pretreated PET fibers by sol-gel method. The transformations of surface chemical structure,microcosmic morphology and thermodynamic property were investigated by Fourier transform infrared spectroscopy( FTIR),X-ray photoelectron spectroscopy( XPS), scanning electron microscope( SEM), X-ray diffraction technique( XRD), and thermo gravimetric analysis( TGA),respectively. The wettability and antistatic property of PET fiber were significantly improved after modification by SE and CS.
文摘In this paper,chitosan was used as a macromolecular cross-linker to prepare high-strength poly(methacrylic acid)hydrogels.The effects of chitosan content and pH on the Swelling Behavior were studied.The swelling rate and the equilibrium swelling ratio decrease with increase of chitosan.Effect of pH on the equilibrium swelling ratio indicates pH-sensitivity of the hydrogels.
文摘Nano-sized trinitrotoluene(TNT) material restrained in silica gel has been prepared by using the sol-gel process to study the effect of varying porosity in gel on the sensitivity of TNT. The TNT content in the gel has been varied from 60 to 90 wt %(at fixed acetone/tetramethoxysilane ratio of 50). Also, for a fixed TNT content of 75 wt %, the pore structure in the gel has been varied by changing the ratio of silica gel precursor to the solvent. The resultant TNT–silica gel composites have been characterized using scanning electron microscopy, thermal analysis, small angle X-ray scattering and surface area analysis techniques. Impact sensitivity studies were carried out using Fall Hammer Impact Test. The results showed that the sensitivity of nanostructured explosives prepared by sol-gel process can be tailored precisely by controlling the process parameters.
基金This study was supported by a grant from the Natural Science Foundation of Beijing (No. 5062039).
文摘Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adipose-derived stem cells (ADSCs) are multipotent and can be differentiated toward nucleus pulposus (NP)-Iike cells.A hypoxic environment may be important for differentiation to NP-like cells because the intervertebral disc is an avascular tissue.Hence,we investigated the induction effects of hypoxia and an injectable 3D chitosan-alginate (C/A) gel scaffold on ADSCs.Methods The C/A gel scaffold consisted of medical-grade chitosan and alginate.Gel porosity was calculated by liquid displacement method.Pore microstructure was analyzed by light and scanning electron microscopy.ADSCs were isolated and cultured by conventional methods.Passage 2 BrdU-labeled ADSCs were co-cultured with the C/A gel.ADSCs were divided into three groups (control,normoxia-induced,and hypoxia-induced groups).In the control group,cells were cultured in 10% FBS/DMEM.Hypoxia-induced and normoxia-induced groups were induced by adding transforming growth factor-β1,dexamethasone,vitamin C,sodium pyruvate,proline,bone morphogenetic protein-7,and 1% ITS-plus to the culture medium and maintaining in 2% and 20% O2,respectively.Histological and morphological changes were observed by light and electron microscopy.ADSCs were characterized by flow cytometry.Cell viability was investigated by BrdU incorporation.Proteoglycan and type Ⅱ collagen were measured by safranin O staining and the Sicool method,respectively.mRNA expression of hypoxia-inducing factor-1α (HIF-1α),aggrecan,and Type Ⅱ collagen was determined by reverse transcription-polymerase chain reaction.Results C/A gels had porous exterior surfaces with 80.57% porosity and 50-200 μm pore size.Flow cytometric analysis of passage 2 rabbit ADSCs showed high CD90 expression,while CD45 expression was very low.The morphology of induced ADSCs resembled that of NP cells.BrdU immunofluorescence showed that most ADSCs survived and proliferated in the C/A gel scaffold.Scanning electron microscopy showed that ADSCs grew well in the C/A gel scaffold.ADSCs in the C/A gel scaffold were positive for safranin O staining.Hypoxia-induced and normoxia-induced groups produced more proteoglycan and Type Ⅱ collagen than the control group (P <0.05).Proteoglycan and Type Ⅱ collagen levels in the hypoxia-induced group were higher than those in the normoxia-induced group (P <0.05).Compared with the control group,higher mRNA expression of HIF-1α,aggrecan,and Type Ⅱ collagen was detected in hypoxia-induced and normoxiainduced groups (P <0.05).Expression of these genes in the hypoxia-induced group was significantly higher than that in the normoxia-induced group (P <0.05).Conclusion ADSCs grow well in C/A gel scaffolds and differentiate toward NP-like cells that produce the same extracellular matrix as that of NP cells under certain induction conditions,which is promoted in a hypoxic state.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. 500041)
文摘This paper reports a new method to prepare chitosan membrane which could be used as a biomedical material. Addition of a fixation agent composed of alcohol, glycerol and potassium hydroxide can accelerate the sol-gel transformation process and hence shorten the preparation period. The present method takes about 6 h to get a flexible membrane with fine appearance, The physical and biological properties of the membrane were also investigated and compared with the membrane prepared by conventional method.
基金Funded by the National Natural Science Foundation of China(No.30870610)the National Glycoengineering Research Center,ShandongUniversity (No.NGRC2009F02)the Shandong Provincial Natural ScienceFoundation (No. Y2008C107)
文摘Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration.
基金Funded by the National Natural Science Foundation of China(No.50973088)
文摘Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties.
文摘Temperature sensitive imprinted poly(N-isopropylacrylamide) nanocomposite gels were syntheses via in-situ, free radical crosslinking polymerization of corresponding monomer in nano-sized silica and five different concentrations of myoglobin solution by using the molecular imprinting method. Mb adsorption from five different concentrations of Mb solutions was investigated by two types of nanocomposite gel systems prepared by non-imprinted and imprinted methods. Nanocomposite gels imprinted with Mb showed higher adsorption capacity and specificity for Mb than nanocomposite gels prepared by the usual procedure. The highest Mb adsorption was observed via the imprinted nanocomposite gels with 12.5% Mb. In addition, selectivity studies were also performed by using two reference molecules as fibrinogen and hemoglobin. The imprinted nanocomposite gels had higher adsorption capacity for Mb than the non-imprinted gels and also exhibited good selectivity for Mb and high adsorption rate depending on the number of Mb sized cavities.
文摘objective:The effects of different chitosan on preventing traumatic peritoneal adhesion in rats was studied in this paper. METHODS: 96 SD rats with injured vermiform process were randomly divided into 4 groups as follows: group A without any treatment as control, group B treated with chitosan gel, group C treated with pure chitosan film and group D treated with chiston film containing 50% gelatin. 2 and 4 weeks after surgery, 12 rats in each group were respectively belly opened to observe chitosan degradation and evaluate peritoneal adhesion, and the adhesive vermiform processes tissues were histopathologically observed. RESULTS: 1.Degradation in the group D was faster than that in the group C but slower than that in the group B. 2. 2 weeks after surgery the adhesion in the group B was milder than that in the control group(goup A) (P<0.05), but that in the group C and D (both P<0.05) were more severe than that in the control group . 3. 4 weeks after surgery , the adhesion in the group B was milder than that in the control group (P<0.05), but that in the group C and D (both P<0.05) were more severe than that in the control group , whereas, there was no significant difference between adhesion in the group C and group D (P>0.05). 4.Histopathological examinaiton indicated that: 2 weeks after surgery ,inflammatory cell infiltration and fibroplastic proliferation dominated in local lesion and the response was most severe on the serous coat, furthermore, the response in the control group was more severe than that in the group B, but milder than that in the group C and D; 4 weeks after surgery, fibroplastic proliferation dominated in local lesion in each group , moreover, the response in the control group was more severe than that in the group B but milder than that in the group C and D. What’s more, integrated fibrous membrane formed around implanted materials in the group C and D, and the fibrous membranes were thinner in the group C than that in the group D. CONCLUSION: 1.Chitosan gel has perfect effect in protecting traumatic peritoneal adhesion in rats. 2.Pure chitosan film could exacerbate peritoneal adhesion and chitosan containing gelatin could exacerbate peritoneal adhesion further.
基金financial supports from the National Natural Science Foundation of China (21503202, 61604143 and 61774139)Yunnan Provincial Natural Science Foundation (Grant No. 2017FA024)
文摘To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization.