The presence of toxic dyes in the aqueous medium has threatened environmental safety, and thereby re- moving them from wastewater in an efficient way is highly desired. Herein, the efficient biosorbents were successfu...The presence of toxic dyes in the aqueous medium has threatened environmental safety, and thereby re- moving them from wastewater in an efficient way is highly desired. Herein, the efficient biosorbents were successfully fabricated via a facile physical gelation process of sodium alginate (SA) and carboxymethyl chitosan (CMCTS) in an acidic aqueous solution. The as-prepared hydrogel beads not only displayed water superabsorbent properties and pH-responsive swelling characters but also exhibited excellent methylene blue (MB) adsorption capacity removal efficiency with experimental maximum MB adsorption capacity of 2518 and 1005 mg g -1 , which are comparable with most reported lignocellulosic and alginate-based hydrogels. The MB adsorption process fitted well in different kinetic and isotherm models and became more heterogeneous in concentrated MB solutions as verified by principal component analysis results. The adsorption mechanism was proposed, and the high dye absorbency was attributed to the strong electro- static forces between adsorbents and adsorbates. Our current study provides a promising and sustainable composite hydrogels platform targeted to dye decontamination.展开更多
A membrane composed of an alginate(ALG) layer and a chitosan(CHS) layer with sustained antimicrobial efficacy was prepared.Ciprofloxacin HC1(CIP) was incorporated into the ALG layer.Morphological feature of the ...A membrane composed of an alginate(ALG) layer and a chitosan(CHS) layer with sustained antimicrobial efficacy was prepared.Ciprofloxacin HC1(CIP) was incorporated into the ALG layer.Morphological feature of the composite membrane was analyzed by scanning electron microscopy(SEM).Water uptake capacity,in vitro drug release,and in vitro antimicrobial activity were evaluated.The composite membrane exhibited perfect binding characteristic between the two layers.The water uptake capacity of all the membranes was above 800%.The CIP could release from the composite membranes for 48 h.The membrane could control the bacterial growth persistently.The results suggested that this CHS/ALG composite membrane incorporated with CIP had the potential for wound dressing application.展开更多
文摘The presence of toxic dyes in the aqueous medium has threatened environmental safety, and thereby re- moving them from wastewater in an efficient way is highly desired. Herein, the efficient biosorbents were successfully fabricated via a facile physical gelation process of sodium alginate (SA) and carboxymethyl chitosan (CMCTS) in an acidic aqueous solution. The as-prepared hydrogel beads not only displayed water superabsorbent properties and pH-responsive swelling characters but also exhibited excellent methylene blue (MB) adsorption capacity removal efficiency with experimental maximum MB adsorption capacity of 2518 and 1005 mg g -1 , which are comparable with most reported lignocellulosic and alginate-based hydrogels. The MB adsorption process fitted well in different kinetic and isotherm models and became more heterogeneous in concentrated MB solutions as verified by principal component analysis results. The adsorption mechanism was proposed, and the high dye absorbency was attributed to the strong electro- static forces between adsorbents and adsorbates. Our current study provides a promising and sustainable composite hydrogels platform targeted to dye decontamination.
文摘A membrane composed of an alginate(ALG) layer and a chitosan(CHS) layer with sustained antimicrobial efficacy was prepared.Ciprofloxacin HC1(CIP) was incorporated into the ALG layer.Morphological feature of the composite membrane was analyzed by scanning electron microscopy(SEM).Water uptake capacity,in vitro drug release,and in vitro antimicrobial activity were evaluated.The composite membrane exhibited perfect binding characteristic between the two layers.The water uptake capacity of all the membranes was above 800%.The CIP could release from the composite membranes for 48 h.The membrane could control the bacterial growth persistently.The results suggested that this CHS/ALG composite membrane incorporated with CIP had the potential for wound dressing application.