[Objective] This study was to realize high-density culture of Chlorella sp. as well as the culture with high lipid yield. [Method] Through analyzing the growth curve of Chlorella sp. cells, dextrose consumption curve,...[Objective] This study was to realize high-density culture of Chlorella sp. as well as the culture with high lipid yield. [Method] Through analyzing the growth curve of Chlorella sp. cells, dextrose consumption curve, change curves of pH and dissolved oxygen, a fed-batch culture was conducted, followed by a nitrogen-deficient culture aiming at accumulating the lipids in Chlorella sp. cells when a high density of Chlorella sp. cells was obtained. [Result] After four batches of feeding were pro- vided, the biomass of Chlorella sp. reached up to 65.25 g/L, and the lipid content increased from 42.75% to 63.82% in Chlorella sp. cells, with the yield of 43.37 g/L in the following 12 hours of nitrogen-deficient culture. [Conclusion] Reasonable fed- batch can significantly improve the biomass of Chlorella sp., and the nitrogen-defi- cient culture further raises the lipid yield of Chlorella sp.展开更多
文摘[Objective] This study was to realize high-density culture of Chlorella sp. as well as the culture with high lipid yield. [Method] Through analyzing the growth curve of Chlorella sp. cells, dextrose consumption curve, change curves of pH and dissolved oxygen, a fed-batch culture was conducted, followed by a nitrogen-deficient culture aiming at accumulating the lipids in Chlorella sp. cells when a high density of Chlorella sp. cells was obtained. [Result] After four batches of feeding were pro- vided, the biomass of Chlorella sp. reached up to 65.25 g/L, and the lipid content increased from 42.75% to 63.82% in Chlorella sp. cells, with the yield of 43.37 g/L in the following 12 hours of nitrogen-deficient culture. [Conclusion] Reasonable fed- batch can significantly improve the biomass of Chlorella sp., and the nitrogen-defi- cient culture further raises the lipid yield of Chlorella sp.