CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly us...CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly used as a catalyst,it needs to be purified before the utilization,and the operating conditions for the catalyst preparation are relatively harsh,requiring the inert gas environment.Considering a high-temperature activation step required for CuCl-based catalysts used for catalyzing synthesis of M3 to form active phase Cu–Si alloys(Cu_(x)Si)with Si powder,in this work,a series of catalysts for the“direct synthesis”of M3 were obtained by a one-step high-temperature activation of the mixture of stable CuCl_(2) precursors,activated carbon-reducing agent,and Si powder,simultaneously achieving the reduction of CuCl_(2) to CuCl and the formation of active phase Cu_(x)Si alloys of CuCl with Si powder.The prepared samples were characterized through various characterization techniques,and investigated for the catalytic performance for the“direct synthesis”of M3.Moreover,the operation conditions were optimized,including the activation temperature,catalyst dosage,Si powder particle size,and reaction temperature.The characterization results indicate that during the one-step activation process,the CuCl_(2) precursor is reduced to CuCl,and the resulting CuCl simultaneously reacts with Si powder to form active phases Cu3Si and Cu15Si4 alloys.The optimal catalyst Sacm(250,0.8:10)exhibits a good catalytic activity with selectivity of 95%and yield of 77%for M3,and shows a good universality for various alcohol substrates.Furthermore,the catalytic mechanism of the prepared catalyst for the“direct synthesis”of M3 was discussed.展开更多
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength...The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.展开更多
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T...Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.展开更多
The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tec...The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.展开更多
The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm...The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.展开更多
We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excel...We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.展开更多
Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatal...Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed.展开更多
Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vi...Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vital to explore alternative catalysts without mercury. We report here that N-doped carbon can catalyze directly transformation of acetylene to vinyl chloride. Particularly, N-doped high surface area mesoporous carbon exhibits a rather high activity with the acetylene conversion reaching 77% and vinyl chloride selectivity above 98% at a space velocity of 1.0 mL.min-l.g-1 and 200 ~C. It delivers a stable performa℃nce within a test period of 100h and no obvious deactivation is observed, demonstrating potentials to substitute the notoriously toxic mercuric chloride catalyst.展开更多
The effect of Cl^- on photocatalytic degradation(PCD) of pollutants is an important factor since it is ubiquitous in nature. In general, Cl^- showed an inhibition on photodegradation due to its scavenging HO- radica...The effect of Cl^- on photocatalytic degradation(PCD) of pollutants is an important factor since it is ubiquitous in nature. In general, Cl^- showed an inhibition on photodegradation due to its scavenging HO- radicals. In this paper, experiments were carried out to examine the effects of CI on the PCD of Methylene Blue (MB) and Orange II (OII) in aqueous TiO2 suspensions under UV light illumination. It was found that low concentration of Cl^- ( 〈 0.01 mol/L) showed little influence on both dyes, however, high concentration of Cl^- ( 〉 0.10 mol/L) had a very different influence on the decolorization of dyes: a significant inhibition for MB but a great promotion for Oll. In the presence of 0.50 mol/L Cl^- , the rate decreased by 70% for MB while increased 7.5-fold for Oll. Furthermore, two bands in the ultraviolet region of Oll were rapidly broken down. The proposed mechanism was discussed in detail.展开更多
In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use o...In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use of different precursors and the addition to gold of a secondary metal as methods which attempt to improve these catalysts, and consider the nature of the active gold species. The vast majority of poly vinyl chloride (PVC) produced globally still uses a mercuric chloride as a cata‐lyst, despite the environmental problems associated with it. Due to the agreement by the Chinese government to remove mercury usage in the PVC industry over the course of the next few years there is an obvious need to find a replacement catalyst;the potential use of gold for this process has been well known for several decades and to date gold seems to be the best candidate for this, pri‐marily due to its superior selectivity when compared to other metals.展开更多
The catalytic application of p-toluenesulfonyl chloride for efficient acetylation of various types of alcohols and phenols with acetic anhydride in solvent-free conditions is reported.Also structurally diverse alcohol...The catalytic application of p-toluenesulfonyl chloride for efficient acetylation of various types of alcohols and phenols with acetic anhydride in solvent-free conditions is reported.Also structurally diverse alcohols were formylated using formic acid based on the use of catalytic amount of p-toluenesulfonyl chloride under solvent-free condition.The reactions were carried out in short reaction time and in good to excellent yields at room temperature.展开更多
Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and ...Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and high yielding reaction for the synthesis of perimidine derivatives.展开更多
LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical me...LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical measurements.Effects of lithium ion content and sintering temperature on physical and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 were also investigated. The results show that the sample synthesized at 750℃with 105%lithium content has fine particle sizes around 200 nm and homogenous sizes distribution.The initial discharge capacity for the powder is 184 mA·h/g between 2.7 and 4.3 V at 0.1C and room temperature.展开更多
PVP-supported bimetallic catalyst, PVP-PdCl2-CdCl2, exhibits extremely high catalytic activity for the hydrogen transfer dechlorination of aryl chlorides in neutral environment. The yields of dechlorination products a...PVP-supported bimetallic catalyst, PVP-PdCl2-CdCl2, exhibits extremely high catalytic activity for the hydrogen transfer dechlorination of aryl chlorides in neutral environment. The yields of dechlorination products are high under mild reaction conditions and the operation is simple.展开更多
Synthesis of symmetrical diaryl sulfoxides from arenes and thionyl chloride in the presence of a catalytic amount of iodine at room temperature under solvent-free conditions is described. Mild reaction conditions, eas...Synthesis of symmetrical diaryl sulfoxides from arenes and thionyl chloride in the presence of a catalytic amount of iodine at room temperature under solvent-free conditions is described. Mild reaction conditions, easy workup, high yield, and easily available catalyst are important features of this method.展开更多
Tetrahydrofuran ring can be opened with acyl chlorides or anhydrides catalyzed by gallium triiodides to afford iodo esters under mild conditions in good yields.
The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low tem...The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed Rut42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions.展开更多
Strontium chloride was used as an efficient and recyclable catalyst in one-pot condensation of anthranilic acid, ortho esters and amines leading to the formation of 4(3H)-quinazolinone derivatives in good yields at ...Strontium chloride was used as an efficient and recyclable catalyst in one-pot condensation of anthranilic acid, ortho esters and amines leading to the formation of 4(3H)-quinazolinone derivatives in good yields at room temperature under solvent-free conditions.展开更多
基金supported by the Key Research & Development Plan of Shandong Province (the Major Scientific and Technological Innovation Projects, 2021ZDSYS13)the Natural Science Foundation of Shandong Province (ZR2021MB135)
文摘CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly used as a catalyst,it needs to be purified before the utilization,and the operating conditions for the catalyst preparation are relatively harsh,requiring the inert gas environment.Considering a high-temperature activation step required for CuCl-based catalysts used for catalyzing synthesis of M3 to form active phase Cu–Si alloys(Cu_(x)Si)with Si powder,in this work,a series of catalysts for the“direct synthesis”of M3 were obtained by a one-step high-temperature activation of the mixture of stable CuCl_(2) precursors,activated carbon-reducing agent,and Si powder,simultaneously achieving the reduction of CuCl_(2) to CuCl and the formation of active phase Cu_(x)Si alloys of CuCl with Si powder.The prepared samples were characterized through various characterization techniques,and investigated for the catalytic performance for the“direct synthesis”of M3.Moreover,the operation conditions were optimized,including the activation temperature,catalyst dosage,Si powder particle size,and reaction temperature.The characterization results indicate that during the one-step activation process,the CuCl_(2) precursor is reduced to CuCl,and the resulting CuCl simultaneously reacts with Si powder to form active phases Cu3Si and Cu15Si4 alloys.The optimal catalyst Sacm(250,0.8:10)exhibits a good catalytic activity with selectivity of 95%and yield of 77%for M3,and shows a good universality for various alcohol substrates.Furthermore,the catalytic mechanism of the prepared catalyst for the“direct synthesis”of M3 was discussed.
基金Funded by the National Natural Science Foundation of China(No.52078050)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JZ-22)。
文摘The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.
基金National Key R&D Program of China(2019YFC1904903 and 2020YFC1806504)China Postdoctoral Science Foundation(2020M680757)Fundamental Research Funds for the Central Universities(2022XJHH08).
文摘Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.
文摘The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.
基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(51374254)supported by the National Natural Science Foundation of China
文摘The leaching kinetics of zinc silicate in ammonium chloride solution was investigated. The effects of stirring speed (150?400 r/min), leaching temperature (95-108 ℃, particle size of zinc silicate (61-150 μm) and the concentration of ammonium chloride (3.5-5.5 mol/L) on leaching rate of zinc were studied. The results show that decreasing the particle size of zinc silicate and increasing the leaching temperature and concentration of ammonium chloride can obviously enhance the leaching rate of zinc. Among the kinetic models of the porous solids tested, the grain model with porous diffusion control can well describe the zinc leaching kinetics. The apparent activation energy of the leaching reaction is 161.26 kJ/mol and the reaction order with respect to ammonium chloride is 3.5.
基金supported by the Industrial Research Project of Shaanxi Science and Technology Department(2014K08-29)Science and Technology Plan Project of Xi’an(CXY1511(7))Scientific Research Foundation of Northwest University~~
文摘We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.
基金Projects(2127106951238002+3 种基金J1210040J1103312)supported by the National Natural Science Foundation of ChinaProject(2013GK3015)supported by the Science and Technology Project of Hunan ProvinceChina
文摘Ag-based nanocatalysts exhibit good catalytic activity for the electrochemical reduction of organic halides. Ag-Ni alloy nanoparticles(NPs) were facilely prepared by chemical reduction, and the as-prepared nanocatalysts were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrocatalytic activity of Ag-Ni NPs for benzyl chloride reduction was studied in organic medium using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results show that the addition of Ni element can obviously decrease the size of Ag-Ni NPs, shift the reduction peak potential(φp) of benzyl chloride positively, and increase the catalytic activity of Ag-Ni NPs. However, when the Ni content reaches a certain value, the catalytic activity of Ag-Ni NPs decreases. Meanwhile, the synergistic catalytic effect of Ag-Ni NPs was also discussed.
基金supported by the Natural Science Foundation of China(No.11079005 and 21033009)the Ministry of Science and Technology of China(2011CBA00503 and 2012CB720302)
文摘Commercial production of vinyl chloride from acetylene relies on the use of HgCla as the catalyst, which has caused severe environmental problem and threats to human health because of its toxicity. Therefore, it is vital to explore alternative catalysts without mercury. We report here that N-doped carbon can catalyze directly transformation of acetylene to vinyl chloride. Particularly, N-doped high surface area mesoporous carbon exhibits a rather high activity with the acetylene conversion reaching 77% and vinyl chloride selectivity above 98% at a space velocity of 1.0 mL.min-l.g-1 and 200 ~C. It delivers a stable performa℃nce within a test period of 100h and no obvious deactivation is observed, demonstrating potentials to substitute the notoriously toxic mercuric chloride catalyst.
基金Bureau of Science and Technology of Zhejiang Province(No.2003C33040)
文摘The effect of Cl^- on photocatalytic degradation(PCD) of pollutants is an important factor since it is ubiquitous in nature. In general, Cl^- showed an inhibition on photodegradation due to its scavenging HO- radicals. In this paper, experiments were carried out to examine the effects of CI on the PCD of Methylene Blue (MB) and Orange II (OII) in aqueous TiO2 suspensions under UV light illumination. It was found that low concentration of Cl^- ( 〈 0.01 mol/L) showed little influence on both dyes, however, high concentration of Cl^- ( 〉 0.10 mol/L) had a very different influence on the decolorization of dyes: a significant inhibition for MB but a great promotion for Oll. In the presence of 0.50 mol/L Cl^- , the rate decreased by 70% for MB while increased 7.5-fold for Oll. Furthermore, two bands in the ultraviolet region of Oll were rapidly broken down. The proposed mechanism was discussed in detail.
文摘In this review we discuss the history of research into the use of gold for the acetylene hydrochlorin‐ation reaction, and describe the recent developments which have led to its commercialisation. We discuss the use of different precursors and the addition to gold of a secondary metal as methods which attempt to improve these catalysts, and consider the nature of the active gold species. The vast majority of poly vinyl chloride (PVC) produced globally still uses a mercuric chloride as a cata‐lyst, despite the environmental problems associated with it. Due to the agreement by the Chinese government to remove mercury usage in the PVC industry over the course of the next few years there is an obvious need to find a replacement catalyst;the potential use of gold for this process has been well known for several decades and to date gold seems to be the best candidate for this, pri‐marily due to its superior selectivity when compared to other metals.
文摘The catalytic application of p-toluenesulfonyl chloride for efficient acetylation of various types of alcohols and phenols with acetic anhydride in solvent-free conditions is reported.Also structurally diverse alcohols were formylated using formic acid based on the use of catalytic amount of p-toluenesulfonyl chloride under solvent-free condition.The reactions were carried out in short reaction time and in good to excellent yields at room temperature.
文摘Various biologically important perimidine derivatives have been synthesized efficiently from various ketones and naphthalene- 1,8-diamine by using a catalytic amount of RuCl_3(1 mol%).This method is a very simple and high yielding reaction for the synthesis of perimidine derivatives.
基金Project(2007CB613607)supported by National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 was prepared by a chloride co-precipitation method and characterized by thermogravimetric analysis, X-ray diffractometry with Rietveld refinement,electron scanning microscopy and electrochemical measurements.Effects of lithium ion content and sintering temperature on physical and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 were also investigated. The results show that the sample synthesized at 750℃with 105%lithium content has fine particle sizes around 200 nm and homogenous sizes distribution.The initial discharge capacity for the powder is 184 mA·h/g between 2.7 and 4.3 V at 0.1C and room temperature.
文摘PVP-supported bimetallic catalyst, PVP-PdCl2-CdCl2, exhibits extremely high catalytic activity for the hydrogen transfer dechlorination of aryl chlorides in neutral environment. The yields of dechlorination products are high under mild reaction conditions and the operation is simple.
文摘Synthesis of symmetrical diaryl sulfoxides from arenes and thionyl chloride in the presence of a catalytic amount of iodine at room temperature under solvent-free conditions is described. Mild reaction conditions, easy workup, high yield, and easily available catalyst are important features of this method.
基金the National Natural Science Foundation of China !298720I0the NSF of she-hang Provincethe Laboratory of Organometallic Ch
文摘Tetrahydrofuran ring can be opened with acyl chlorides or anhydrides catalyzed by gallium triiodides to afford iodo esters under mild conditions in good yields.
基金supported by the National Natural Science Foundation of China(20825310 and 20973011)National Basic Research Project of China (2011CB201400 and 2011CB808700)
文摘The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed Rut42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions.
文摘Strontium chloride was used as an efficient and recyclable catalyst in one-pot condensation of anthranilic acid, ortho esters and amines leading to the formation of 4(3H)-quinazolinone derivatives in good yields at room temperature under solvent-free conditions.