期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ClC-3 chloride channel in hippocampal neuronal apoptosis 被引量:3
1
作者 Lijuan Xu Shuling Zhang +4 位作者 Hongling Fan Zhichao Zhong Xi Li Xiaoxiao Jin Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第32期3047-3054,共8页
Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mm... Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mmol/L 3-morpholinosyndnomine (SIN-l), a nitric oxide donor. The models were then cultured with 0.1 mmol/L of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; the chloride channel blocker)for 18 hours. Neuronal survival was detected using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was assayed by Hoechst 33342-labeled neuronal DNA fluorescence staining. Western blot analysis and immunochemilumi- nescence staining were applied to determine the changes of activated caspase-3 and CIC-3 channel proteins. Real-time PCR was used to detect the mRNA expression of CIC-3. The results showed that SIN-1 reduced the neuronal survival rate, induced neuronal apoptosis, and promoted CIC-3 chloride channel protein and mRNA expression in the apoptotic neurons. DIDS reversed the effect of SIN-I. Our findings indicate that the increased activities of the CIC-3 chloride channel may be involved in hippocampal neuronal apoptosis induced by nitric oxide. 展开更多
关键词 neural regeneration brain injury nitric oxide CIC-3 chloride channel 3-morpholinosyndnomine 4 4'-diisothiocyanostilbene-2 2'-disulfonic acid hippocampal neurons apoptosis grants-supportedpaper NEUROREGENERATION
下载PDF
Chloride channel involved in the regulation of curcumin-induced apoptosis of human breast cancer cells
2
作者 You-Wei Huang Jia-Hong Chen +4 位作者 Zi-Xi Qin Jie-Kun Chen Ren-Dong Hu Zheng Wu Xi Lin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2018年第3期240-244,共5页
Objective: To investigate the role of ClC-3 chloride channel in the proliferation of breast cancer cell line Mcf-7 treated with curcumin and its specific mechanism. Methods: MTT assay was used to detect the effect of ... Objective: To investigate the role of ClC-3 chloride channel in the proliferation of breast cancer cell line Mcf-7 treated with curcumin and its specific mechanism. Methods: MTT assay was used to detect the effect of chloride channel blocker(DIDS) and curcumin on Mcf-7 and human normal cell viability. Patch-clamp technique was used to determine the current density before and after drug treatment. Apoptosis assay by flow cytometry was performed for further examination of cell apoptosis. Results: Curcumin had toxicity on Mcf-7 and HUVEC cells and DIDS reduced the survival rate of Mcf-7 cells by inhibiting proliferation. Curcumin could activate the chloride ion current on MCF-7 cell membrane, which would be inhibited by DIDS.Finally, curcumin in low concentration combined with DIDS could significantly promote the MCF-7 cells apoptosis. Conclusions: Our results suggest that ClC-3 protein is involved in the regulation of curcumin induced proliferation inhibiting in breast cancer cells through inducing cell apoptosis. ClC-3 may be a potential target of tumor therapy. 展开更多
关键词 CURCUMIN DIDS COMBINATION chloride channel 3 MCF-7 APOPTOSIS
下载PDF
Murine calcium-activated chloride channel family member 3 induces asthmatic airway inflammation independently of allergen exposure
3
作者 MEI Li HE Li +5 位作者 WU Si-si ZHANG Bo XUYong-jian ZHANG Zhen-xiang ZHAO Jian-ping ZHANG Hui-lan 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第17期3283-3288,共6页
Background Expression of murine calcium-activated chloride channel family member 3 (mCLCA3) has been reported to be increased in the airway epithelium of asthmatic mice challenged with ovalbumin (OVA). However, it... Background Expression of murine calcium-activated chloride channel family member 3 (mCLCA3) has been reported to be increased in the airway epithelium of asthmatic mice challenged with ovalbumin (OVA). However, its role in asthmatic airway inflammation under no OVA exposure has not yet been clarified. Methods mCLCA3 plasmids were transfected into the airways of normal BALB/c mice. mCLCA3 expression and airway inflammation in mouse lung tissue were evaluated. Cell differentials and cytokines in bronchoalveolar lavage fluid (BALF) were analyzed. The expression of mCLCA3 protein and mucus protein mucin-5 subtype AC (MUC5AC) were analyzed by Western blotting. The mRNA levels of mCLCA3, MUC5AC and interleukin-13 (IL-13) were determined quantitatively. Results mCLCA3 expression was not detected in the control group while strong immunoreactivity was detected in the OVA and mCLCA3 plasmid groups, and was strictly localized to the airway epithelium. The numbers of inflammatory cells in lung tissue and BALF were increased in both mCLCA3 plasmid and OVA groups. The protein and mRNA levels of mCLCA3 and MUC5AC in the lung tissue were significantly increased in the mCLCA3 plasmid and OVA groups compared to the control group. The level of IL-13, but not IL-4, IL-5, IFN-y, CCL2, CCL5 or CCL11, was significantly increased compared with control group in BALF in the mCLCA3 plasmid and OVA groups. The level of IL-13 in the BALF in the mCLCA3 plasmid group was much higher than that in the OVA group (P 〈0.05). The level of mCLCA3 mRNA in lung tissue was positively correlated with the levels of MUC5AC mRNA in lung tissue, IL-13 mRNA in lung tissue, the number of eosinophils in BALF, and the content of IL-13 protein in BALE The level of IL-13 mRNA in lung tissue was positively correlated with the number of eosinophils in BALF and the level of MUC5AC mRNA in lung tissue. Conclusion These findings suggest that increased expression of a single-gene, mCLCA3, could simulate an asthma attack, and its mechanism may involve mCLCA3 overexpression up-regulating IL-13 expression. 展开更多
关键词 murine calcium-activated chloride channel family member 3 ASTHMA INFLAMMATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部