Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV Inter...Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs.展开更多
The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-...The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.展开更多
Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0...Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.展开更多
The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure...The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.展开更多
A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies...A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.展开更多
Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating...Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample.展开更多
Thermal energy storage(TES)systems based on molten salt are widely used in concentrating solar power(CSP)plants.The investigation of the corrosion behavior of alloy materials in molten salt is crucial for the correct ...Thermal energy storage(TES)systems based on molten salt are widely used in concentrating solar power(CSP)plants.The investigation of the corrosion behavior of alloy materials in molten salt is crucial for the correct selection of alloy materials and the design of TES systems.In this study,the corrosion behavior of 304,310S,316,and In625 alloys in molten chloride salts(27 mol%NaCl-22 mol%KCl-51 mol%MgCl,)was investigated.The evolution of mass loss of the alloy samples with corrosion time and temperature and the analysis of the experimental results by scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)revealed the corrosion mechanism of the alloy samples in molten chloride salts.The main factors affecting the corrosion of the alloy samples were further analyzed.It was found that the loose multi-layer corrosion was formed on the surface of the corroded alloy samples with the increase in corrosion degree.Moreover,the experimental results.showed that Mo played a positive role in improving the corrosion resistance of the alloy samples because the presence of Mo could inhibit the outward diffusion of alloying element Cr.This work enriches the molten salt corrosion database and provides a reference for the selection of alloy materials for TES systems with potential application in CSP plants.展开更多
The chloride salts have great potential used as high-temperature thermal energy storage(TES) medium for the concentrated solar power system.In this study,LiCl,KCl and CaCl_(2) were selected as energy storage materials...The chloride salts have great potential used as high-temperature thermal energy storage(TES) medium for the concentrated solar power system.In this study,LiCl,KCl and CaCl_(2) were selected as energy storage materials in order to further broaden the working temperature of ternary chloride salt and improve its energy storage density.The new high-temperature energy storage ternary chloride composed of LiCl,KCl,and CaCl_(2) was developed based on the phase diagram generated by FactSage.Three components of LiCl-KCl-CaCl_(2) with the mass ratio of 37.85%-53.38%-8.77%,30.90%-13.82%-55.28% and 1.78%-18.61%-79.61% were developed,of which the corresponding melting temperature(T_(m)) 340.93,433.57 and 626.85℃,respectively,was obtained either.Considering that T_(m) of the third group of salts was too high,only the first two groups of salts were tested.DSC test showed that the actual melting point was only 0.46% and 1.64% different from the melting point predicted by Factsage.The thermal properties of the two ternary chloride salts were also compared.The solid and liquid-specific heat of ternary salts was determined by DSC using sapphire as the standard reference.The vapor pressure and decomposition temperature of ternary chloride salts were investigated.The results showed that the vapor pressure of salt 1 was almost constant below 650℃ by FactSage.Meanwhile,the TG results showed that the upper working temperature of salt 1 was 650℃ under the air atmosphere.In addition,the ternary chloride salts after short-term cycling still exhibited excellent thermal properties,which revealed that these good thermal properties make them have broad application prospects in high-temperature thermal energy storage systems.展开更多
This study aims to investigate the effect of sodium replacement on the quality characteristics of pastırma.For this purpose,pastırma production with four different salt mixtures(Ⅰ.100%NaCl;Ⅱ.50%NaCl+50%KCl;Ⅲ.40%NaC...This study aims to investigate the effect of sodium replacement on the quality characteristics of pastırma.For this purpose,pastırma production with four different salt mixtures(Ⅰ.100%NaCl;Ⅱ.50%NaCl+50%KCl;Ⅲ.40%NaCl+40%KCl+20%CaCl_(2);Ⅳ.30%NaCl+40%KCl+20%CaCl_(2)+10%MgCl_(2))were carried out using traditional method.The use of different salt mixtures for pastırma had no statistically significant effect on the microbial counts and residual nitrite of the final product.The a*and b*values were affected by this treatment.The salt mixture containing CaCl_(2) or CaCl_(2)+MgCl_(2) significantly decreased the pH values and sensory scores.The eighteen volatile compounds were affected by the salt mixtures.Na^(+),K^(+),Ca^(2+),and Mg^(2+)had a certain increase depending on their ratio in the salt mixtures.The highest Cathepsin activity in all pastırma samples was observed in Cathepsin B+L.The salt mixture with NaCl+KCl+CaCl_(2)+MgCl_(2) increased acid lipase activity.However,this mixture had no significant effect on neutral lipase activity.展开更多
Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purit...Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purity of the deposited aluminum is about 99.7% with the energy consumption of 3-9 kW&#183;h per kg Al, and the current efficiency is 44%-64% when the deposition process is carried out under 100 mA/cm2 for 4 h at 170 &#176;C. The effects of experimental parameters, such as molar ratio of AlCl3 to NaCl, cathodic current density and electrolysis time, on the current efficiency were studied. The molar ratio of AlCl3 to NaCl has little effect on the current efficiency, and the increase of deposition temperature is beneficial to the increase of current efficiency. However, the increase of current density or electrolysis time results in the decrease of current efficiency. The decrease of current efficiency is mainly related to the formation of dendritic or powder deposit of aluminum which is easy to fall into the electrolyte.展开更多
Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair t...Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.展开更多
Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry mould...Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry moulding and carbon embedded firing at i 300 ℃ and 1 400 ℃ for 3 h, respectively. Phase composition and microstructure of the synthesized Ti (C, N) were analyzed by XRD, SEM and EPMA. Effects of different carbon sources and NaBr-KCl on the synthesis of Ti( C, N) were investigated. The results show that: (1) Ti (C, N) can be synthesized by using carbon black, graphite, activated carbon or amylum as carbon source separately; (2) Additive NaBr - KCl is more favorable for accelerating the carbothermal reduction reaction using carbon black or amylum as carbon source; (3) In the presence of NaBr - KCl, particle size of the synthesized Ti( C, N) is 5 -8μm using carbon black as carbon source fired at 1 300 ℃ for 3 h, while that is only 1 - 3 μm using graphite, activated carbon or amylum fired at 1 400 ℃ for 3 h.展开更多
The oxidative reaction between lanthanum trichloride and oxide ion was studied in the molten LiCl-KCl eutectic at 773 K by in-situ Raman spectroscopy using an yttria-stabilized zirconia electrode in conjunction with e...The oxidative reaction between lanthanum trichloride and oxide ion was studied in the molten LiCl-KCl eutectic at 773 K by in-situ Raman spectroscopy using an yttria-stabilized zirconia electrode in conjunction with electrochemical methods.The formation of lanthanum oxychloride,LaOCl(s),was confirmed by studying the vibrational properties of crystalline LaOCl and X-ray diffraction analysis.The solubility product of LaOCl in the LiCl-KCl molten eutectic at 773 K is found to be pKsp(LaOCl)=7.569±0.100,by combining the results of Raman spectroscopy and potentiometric titration with the addition of barium oxide.The use of Raman spectroscopic quantitation of dissolved lanthanum ions in the system allows faster and more accurate determination of the stable phase of lanthanum as well as the solubility product of LaOCl compared with that measured by potentiometric titration only.Based on experimentally obtained pKsp and standard equilibrium potentials,the potentialpO2- phase diagram of lanthanum in the molten LiCl-KCl eutectic was reported.展开更多
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No.XDA02010000)the Frontier Science Key Program of Chinese Academy of Sciences (No.QYZDY-SSW-JSC016)the Shanghai Sailing Program (No.20YF1457600).
文摘Due to their unique features,such as the inherent safety,simplified fuel cycle,and continuous on-line reprocessing,molten salt reactors(MSRs)are regarded as one of the six reference reactors in the Generation IV International Forum(GEN-IV).Molten chloride salt fast reactors(MCFRs)are a type of MSR.Compared to molten fluoride salt reactors(MFSRs),MCFRs have a higher solubility of heavy metal atoms,a harder neutron spectrum,lower accumulation of fission products(FPs),and better breeding and transmutation performance.Thus,MCFRs have been recognized as a type of MSR with great prospects for future development.However,as the most important feature for MSRs,the effect of different reprocessing modes on MCFRs must be researched in depth.As such,this study investigated the effect of different isotopes,especially FPs,on the neutronic performance of an MCFR,such as its breeding performance.Furthermore,the characteristics of the different reprocessing modes and MCFR rates were analyzed in terms of safety,radioactivity level,neutron economy,and breeding capacity.In the end,a reprocessing method suitable for MCFRs was determined through calculation and analysis,which provides a reference for the further research of MCFRs.
基金Projects(51571112,51171079,51471087) supported by the National Natural Science Foundation of ChinaProject(13KJA430003) supported by Jiangsu Higher Education Institutions of China+1 种基金Project supported by Qing Lan Project,ChinaProject supported by the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions,China
文摘The effects of chloride salts(NaCl,MgCl2and NH4Cl)on the hydrolysis kinetics of MgH2prepared by hydridingcombustion synthesis and mechanical milling(HCS+MM)were discussed.X-ray diffraction(XRD)analyses show that high-purityMgH2was successfully prepared by HCS.Hydrolysis performance test results indicate that the chloride salt added during the millingprocess is favorable to the initial reaction rate and hydrogen generation yield within60min.A MgH2?10%NH4Cl composite exhibitsthe best performance with the hydrogen generation yield of1311mL/g and a conversion rate of85.69%in60min at roomtemperature.It is suggested that the chloride salts not only play as grinding aids in the milling process,but also create fresh surface ofreactive materials,favoring the hydrolysis reaction.
基金supported by the National Key Technologies Research and Development Program(2016YFC0501404)the National Natural Science Foundation of China(41461064)
文摘Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.
基金supported by the National Science Foundation of Shanghai(No.22ZR1474600)the National Natural Science Foundation of China(No.12175302)+1 种基金the“Thorium Molten Salt Reactor Nuclear Energy System”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 02040000)the“Transformational Technologies for Clean Energy and Demonstration,”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21000000)。
文摘The corrosion behavior of 316H stainless steel(SS)in the impure and purified Na Cl–KCl–Mg Cl_(2) salt was investigated at700°C.Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture,present in the form of Mg Cl_(2)·6H_(2)O.316H SS occurred severe intergranular corrosion with a corrosion depth of 130μm for1000 h in the impure Na Cl–KCl–Mg Cl_(2) salt.In contrast,the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture,and the corresponding reactions were also discussed.As a result,the corrosiveness of Na Cl–KCl–Mg Cl_(2) salt is reduced significantly.316H SS occurred slight uniform corrosion with a depth of less than 5μm for 3000 h in the purified Na Cl–KCl–Mg Cl_(2) salt.
基金the Special Fund of Hunan Province for Innovative Province Building-Support Program for Young Talents of Hunan,China(No.2020RC3034).
文摘A low-toxicity and environment-friendly NaCl−KCl−CsCl−K_(2)NbF_(7) system was used to prepare Nb coatings on Mo substrates.The effects of temperature,current density and electrodeposition time on the micromorphologies and textures of the electrodeposited Nb coatings were studied.The results showed that Nb coatings obtained at 30−70 mA/cm^(2) in the temperature range of 700−750℃ were continuous and compact,with a hardness range of 2.16−2.45 GPa.As the columnar crystals grew with time,the preferential growth orientations of the Nb coatings changed from<200>to<211>and then became disordered.With increasing polarization,the morphologies of the Nb coatings changed from hexagonal star-like surface to conical or pyramid-like surface.
文摘Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample.
基金financially supported by the China National Key Research and Development Plan Project(No.2018YFA0702300)the National Natural Science Foundation of China(Nos.52227813 and 51950410590)。
文摘Thermal energy storage(TES)systems based on molten salt are widely used in concentrating solar power(CSP)plants.The investigation of the corrosion behavior of alloy materials in molten salt is crucial for the correct selection of alloy materials and the design of TES systems.In this study,the corrosion behavior of 304,310S,316,and In625 alloys in molten chloride salts(27 mol%NaCl-22 mol%KCl-51 mol%MgCl,)was investigated.The evolution of mass loss of the alloy samples with corrosion time and temperature and the analysis of the experimental results by scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)revealed the corrosion mechanism of the alloy samples in molten chloride salts.The main factors affecting the corrosion of the alloy samples were further analyzed.It was found that the loose multi-layer corrosion was formed on the surface of the corroded alloy samples with the increase in corrosion degree.Moreover,the experimental results.showed that Mo played a positive role in improving the corrosion resistance of the alloy samples because the presence of Mo could inhibit the outward diffusion of alloying element Cr.This work enriches the molten salt corrosion database and provides a reference for the selection of alloy materials for TES systems with potential application in CSP plants.
基金financially supported by the National Natural Science Foundation of China (Grants No.52130607,52090062 and 52211530087)the Double First-Class Key Program of Gansu Provincial Department of Education (Grant No.GCJ2022-38)。
文摘The chloride salts have great potential used as high-temperature thermal energy storage(TES) medium for the concentrated solar power system.In this study,LiCl,KCl and CaCl_(2) were selected as energy storage materials in order to further broaden the working temperature of ternary chloride salt and improve its energy storage density.The new high-temperature energy storage ternary chloride composed of LiCl,KCl,and CaCl_(2) was developed based on the phase diagram generated by FactSage.Three components of LiCl-KCl-CaCl_(2) with the mass ratio of 37.85%-53.38%-8.77%,30.90%-13.82%-55.28% and 1.78%-18.61%-79.61% were developed,of which the corresponding melting temperature(T_(m)) 340.93,433.57 and 626.85℃,respectively,was obtained either.Considering that T_(m) of the third group of salts was too high,only the first two groups of salts were tested.DSC test showed that the actual melting point was only 0.46% and 1.64% different from the melting point predicted by Factsage.The thermal properties of the two ternary chloride salts were also compared.The solid and liquid-specific heat of ternary salts was determined by DSC using sapphire as the standard reference.The vapor pressure and decomposition temperature of ternary chloride salts were investigated.The results showed that the vapor pressure of salt 1 was almost constant below 650℃ by FactSage.Meanwhile,the TG results showed that the upper working temperature of salt 1 was 650℃ under the air atmosphere.In addition,the ternary chloride salts after short-term cycling still exhibited excellent thermal properties,which revealed that these good thermal properties make them have broad application prospects in high-temperature thermal energy storage systems.
基金supported by Scientific Research Projects Council of Atatürk University (BAP 2012/251)
文摘This study aims to investigate the effect of sodium replacement on the quality characteristics of pastırma.For this purpose,pastırma production with four different salt mixtures(Ⅰ.100%NaCl;Ⅱ.50%NaCl+50%KCl;Ⅲ.40%NaCl+40%KCl+20%CaCl_(2);Ⅳ.30%NaCl+40%KCl+20%CaCl_(2)+10%MgCl_(2))were carried out using traditional method.The use of different salt mixtures for pastırma had no statistically significant effect on the microbial counts and residual nitrite of the final product.The a*and b*values were affected by this treatment.The salt mixture containing CaCl_(2) or CaCl_(2)+MgCl_(2) significantly decreased the pH values and sensory scores.The eighteen volatile compounds were affected by the salt mixtures.Na^(+),K^(+),Ca^(2+),and Mg^(2+)had a certain increase depending on their ratio in the salt mixtures.The highest Cathepsin activity in all pastırma samples was observed in Cathepsin B+L.The salt mixture with NaCl+KCl+CaCl_(2)+MgCl_(2) increased acid lipase activity.However,this mixture had no significant effect on neutral lipase activity.
基金Projects(51104042,51074046)supported by the National Natural Science Foundation of ChinaProject(N120405006)supported by the Fundamental Research Funds for the Central University,China
文摘Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purity of the deposited aluminum is about 99.7% with the energy consumption of 3-9 kW&#183;h per kg Al, and the current efficiency is 44%-64% when the deposition process is carried out under 100 mA/cm2 for 4 h at 170 &#176;C. The effects of experimental parameters, such as molar ratio of AlCl3 to NaCl, cathodic current density and electrolysis time, on the current efficiency were studied. The molar ratio of AlCl3 to NaCl has little effect on the current efficiency, and the increase of deposition temperature is beneficial to the increase of current efficiency. However, the increase of current density or electrolysis time results in the decrease of current efficiency. The decrease of current efficiency is mainly related to the formation of dendritic or powder deposit of aluminum which is easy to fall into the electrolyte.
基金financially supported by the National Natural Science Foundation of China(Grant No.51541904)the Natural Science Foundation of Zhejiang Province(Grant No.LY16E090007)the Natural Science Foundation of Ningbo(Grant No.2016A610219)
文摘Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.
基金the Natural Science Foundation of Hubei Province (2007ABA372) and the New Century Excellent Talents in University (NCET- 06-0676).
文摘Ti( C, N) was synthesized with the starting materials of 76. 9% titania white and 23. 1% carbon black (graphite or activated carbon ), or 40% titania white and 60% amylum, with or without 10% NaBr - KCl, dry moulding and carbon embedded firing at i 300 ℃ and 1 400 ℃ for 3 h, respectively. Phase composition and microstructure of the synthesized Ti (C, N) were analyzed by XRD, SEM and EPMA. Effects of different carbon sources and NaBr-KCl on the synthesis of Ti( C, N) were investigated. The results show that: (1) Ti (C, N) can be synthesized by using carbon black, graphite, activated carbon or amylum as carbon source separately; (2) Additive NaBr - KCl is more favorable for accelerating the carbothermal reduction reaction using carbon black or amylum as carbon source; (3) In the presence of NaBr - KCl, particle size of the synthesized Ti( C, N) is 5 -8μm using carbon black as carbon source fired at 1 300 ℃ for 3 h, while that is only 1 - 3 μm using graphite, activated carbon or amylum fired at 1 400 ℃ for 3 h.
基金Project supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(NRF-2017M2A8A5014801,NRF-2016M2B2B1945252)。
文摘The oxidative reaction between lanthanum trichloride and oxide ion was studied in the molten LiCl-KCl eutectic at 773 K by in-situ Raman spectroscopy using an yttria-stabilized zirconia electrode in conjunction with electrochemical methods.The formation of lanthanum oxychloride,LaOCl(s),was confirmed by studying the vibrational properties of crystalline LaOCl and X-ray diffraction analysis.The solubility product of LaOCl in the LiCl-KCl molten eutectic at 773 K is found to be pKsp(LaOCl)=7.569±0.100,by combining the results of Raman spectroscopy and potentiometric titration with the addition of barium oxide.The use of Raman spectroscopic quantitation of dissolved lanthanum ions in the system allows faster and more accurate determination of the stable phase of lanthanum as well as the solubility product of LaOCl compared with that measured by potentiometric titration only.Based on experimentally obtained pKsp and standard equilibrium potentials,the potentialpO2- phase diagram of lanthanum in the molten LiCl-KCl eutectic was reported.