Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlay...Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.展开更多
The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin ...The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.展开更多
A new approach was developed to prepare high-performance isobutylene-isoprene rubber/swollen organoclay nanocomposites by shear mixing.Compared with traditional melt compounding method,better dispersion of nanoclay la...A new approach was developed to prepare high-performance isobutylene-isoprene rubber/swollen organoclay nanocomposites by shear mixing.Compared with traditional melt compounding method,better dispersion of nanoclay layers in rubber matrix was verified through transmission electron microscopy(TEM) and X-ray diffraction(XRD).The nanocomposites also exhibit significantly improved mechanical properties and gas barrier property.As a mechanism,the molecules of organic swelling agent play a vital role in accelerating the diffusion and intercalation of the matrix molecules.展开更多
The thermal degradation kinetics of chlorinated natural rubber(CNR) at constant heating rate has been studied. The results indicate that the thermal degradation of CNR is a one step reaction and the degradation temper...The thermal degradation kinetics of chlorinated natural rubber(CNR) at constant heating rate has been studied. The results indicate that the thermal degradation of CNR is a one step reaction and the degradation temperature is directly propotional to the heating rate, but the thermal degradation rate is less affected by the heating rate. The main reaction in thermal degradation is dehydrochlorination with an activation energy closing to that of the dehydrochlorination of PVC.展开更多
基金supported by the National Natural Science Foun-dation of China(51873103)Capacity Building Project of Some Local Colleges and Universities in Shanghai(17030501200)+2 种基金Scien-tific and Technological Support Projects in the Field of Biomedicine(19441901700)Talent Program of Shanghai University of Engi-neering Science(2017RC422017)First-rate Discipline Con-struction of Applied Chemistry(2018xk-B-06).
文摘Montmorillonite(MMT) was modified by ultrasound and castor oil quaternary ammonium salt intercalation method to prepare a new type of organic montmorillonite(OMMT). The surface structure, particle morphology, interlayer distance, and thermal behavior of the samples obtained were characterized. The modified OMMT was then added to chlorinated butyl rubber(CIIR) by mechanical blending, and a composite material with excellent damping properties was obtained. The mechanical experiment results of CIIR nanocomposites showed that the addition of OMMT improved their tensile strength, hardness,and stress relaxation rate. Compared with pure CIIR, when the content of OMMT was 5 phr(part per hundred of rubber), the tensile strength of the nanocomposite was increased by 677% and the elongation at break was also increased by 105.4%. The enhancement of this performance was mainly due to the dispersion of the nanosheets in CIIR rubber and the chemical interaction between the organoclay and the polymer matrix, which was confirmed by morphology and spectral analysis. OMMT also endowed a positive effect on the damping properties of CIIR nanocomposites. After adding 5 phr of OMMT, the nanocomposite owned the best damping performance, and the damping factor, tanδmax, was 37.9% higher than that of pure CIIR. Therefore, the good damping and mechanical properties of these CIIR nanocomposites provided some novel and promising methods for preparing high-damping rubber in a wide temperature range.
基金This work was supported by the "The National High Technology Research and Development Program" of Ministry of Science and Technology of China (No. 2002AA333020).
文摘The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylaterubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubberand its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.
基金supported by the National Natural Science Foundation of China-Distinguished Youth Foundation (No.50725310)the National Natural Science Foundation of China(No.50873095)+1 种基金the Natural Science Foundation of Shanxi Province of China(No.2009011031)Program for New Century Excellent Talents in Universities(NCET-09- 0873)
文摘A new approach was developed to prepare high-performance isobutylene-isoprene rubber/swollen organoclay nanocomposites by shear mixing.Compared with traditional melt compounding method,better dispersion of nanoclay layers in rubber matrix was verified through transmission electron microscopy(TEM) and X-ray diffraction(XRD).The nanocomposites also exhibit significantly improved mechanical properties and gas barrier property.As a mechanism,the molecules of organic swelling agent play a vital role in accelerating the diffusion and intercalation of the matrix molecules.
文摘The thermal degradation kinetics of chlorinated natural rubber(CNR) at constant heating rate has been studied. The results indicate that the thermal degradation of CNR is a one step reaction and the degradation temperature is directly propotional to the heating rate, but the thermal degradation rate is less affected by the heating rate. The main reaction in thermal degradation is dehydrochlorination with an activation energy closing to that of the dehydrochlorination of PVC.