Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe...Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe of the disinfectant powder. Stability test, suspension quantitative bactericidal test, simulation field triM, and animal toxicity test were carded out to observe its bactericidal and toxicological effects. Results The orthogonal experiment showed that the type of water solution had no effect on the disinfectant powder and the best ratio of sodium chlorite to solid acid was 1:3. Ten grams of the disinfectant powder was fully dissolved in 20 mL water for 2 min, and diluted to 500 mL in water. After 5-10 min, the concentration of chlorine dioxide (CIO2) solution was 266 mg/L to 276 mg/L. After stored at 54℃ for 14 d, the average concentration of CIO2 was decreased by 5.03%. Suspension quantitative bactericidal test showed that the average killing logarithm (KL) value for both Staphylococcus aureus and Escherichia coli in 100 mg/L CIO2 solution for 2 min was over 5.00. In simulation field triM, the average descending KL value for Escherichia coli in the solution containing 100 mg/L CIO2 for 5 min was over 3.00. The mouse acute LD50 in the solution 5 times exceeded 5000 mg/kg. The disinfectant powder was not toxic and irritative to rabbit skin and had no mutagenic effect on mouse marrow polychromatic erythrocytes (PCE). Conclusion The stability and bactericidal efficacy of solid chlorine dioxide-based disinfectant powder in single-pack are good. The solution containing 100 mg/L CIO2 can kill vegetative forms of bacteria. The concentration of CIO2 on the disinfecting surface of objects is 100 mg/L. The disinfectant powder is not toxic and irritative.展开更多
BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household di...BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household disinfectants.AIM To summarize the clinical characteristics and treatment effects of chlorine poisoning caused by improper mixing of hypochlorite bleach with acidic cleaning agents.METHODS We retrospectively analyzed baseline and clinical data,clinical symptoms,and treatment methods of seven patients with chlorine poisoning who were admitted to the National Army Poisoning Treatment Center.RESULTS Among the seven patients,the average poisoning time(exposure to admission)was 57 h(4-240 h).All patients were involved in cleaning bathrooms.Chest computed tomography scans revealed bilateral lung effusions or inflammatory changes in five patients.The partial pressure of oxygen decreased in six patients,and respiratory failure occurred in one.Five patients had different degrees of increase in white blood cell count.Humidified oxygen therapy,non-invasive mechanical ventilation,anti-inflammatory corticosteroids,antioxidants,and antibiotics were administered for treatment.The average length of hospital stay was 7 d(4-9 d).All seven patients recovered and were discharged.CONCLUSION Improper mixing of household disinfectants may cause damage to the respiratory system due to chlorine poisoning.Corticosteroids may improve lung exudation in severe cases,and symptomatic supportive treatment should be performed early.展开更多
Worldwide epidemiological reports assert that drinking water is a source for infections and Legionella control represents a critical issue in healthcare settings. Chemical disinfections of water networks are control m...Worldwide epidemiological reports assert that drinking water is a source for infections and Legionella control represents a critical issue in healthcare settings. Chemical disinfections of water networks are control measures that need to be fine-tuned to obtain satisfactory results in large buildings over prolonged time periods. Aim of study is the evaluation of the effect of anolyte and chlorine dioxide, applied in two different hot water networks of a nursing home to manage Legionella risk. Nursing home has two buildings (A and B), with the same point of aqueduct water entrance. From June 2016, following a shock chlorination, the continuous disinfections with chlorine dioxide and anolyte were applied in hot networks of building A and B, respectively. Hot water was sampled at the central heating system and at two points of use for Legionella research, while chemical tests of manganese (Mn), iron (Fe), zinc (Zn) and trihalomethanes compounds (THM) were implemented to evaluate the disinfection by-products presence. Before chlorination Legionella pneumophila sg1 was recovered with a mean count of 2.4 × 104 CFU/L, while chemical compounds concentrations were within the law limits (Directive 98/83/EC). Then the disinfections Legionella was not recovered in both hot water plants. After the disinfection with chlorine dioxide (from June 2016 to May 2018), a statistically significant increase of iron, zinc and THM concentrations was detected in building A (p = 0.012;p = 0.004;p = 0.008). Both disinfectants appear effective against Legionella spp. growth in water network, but anolyte ensures a lower disinfection by-products release.展开更多
Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out i...Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.展开更多
The effects of ozonation on the formation potential of typical disinfection byproducts (DBPs) and the changes of genotoxicity during post chlorination of tertiary effluent from a sewage treatment plant were investig...The effects of ozonation on the formation potential of typical disinfection byproducts (DBPs) and the changes of genotoxicity during post chlorination of tertiary effluent from a sewage treatment plant were investigated. Ozonation enhanced the yields of all detected chlorine DBPs except CHCI3. At a chlorine dose of 5 mg/L, the three brominated THMs and five HAAs increased, while chloroform decreased with the increase of ozone dose from 0 to 10 mg/L (ozone dose in consumption base). At a chlorine dose of 10 mg/L, the two mixed bromochloro species THMs and two dominant HAAs (DCAA and TCAA) increased firstly and then decreased with the increase of ozone dose, with the turning point approximately occurring at an ozone dose of 5 mg/L. The genotoxicity detected using umu test, on the other hand, was removed from 7 Ixg 4-NQO/L to a negligible level by ozonation under an ozone dose of 5 mg/L. Chlorination could further remove the genotoxicity to some extent. It was found that SUVA (UV absorbance divided by DOC concentration) might be used as an indicative parameter for monitoring the removal of genotoxicity during the oxidation.展开更多
Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a stud...Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocylops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide prcoxidation combined with the conventional drinking water treatment process. Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukorti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.展开更多
Practicability of method for the Hydra regeneration assay on the prescreening teratogenic potential of chlorinated drinking water disinfection by products was studied through both the assays of toxicity of adult ...Practicability of method for the Hydra regeneration assay on the prescreening teratogenic potential of chlorinated drinking water disinfection by products was studied through both the assays of toxicity of adult Hydra (T) and inhibition of the growth of regeneration Hydra (I) by using chloroform, dichloromethane and chloroacetic acid. The results showed that T 50 / I 50 ratios of chloroform and chloroacetic acid were 2 77 and 6 16 respectively, with teratogenic potential. T 50 / I 50 ratio of dichloromethane was 1.69, with weaker teratogenic potential. These experimental results indicated preliminarily that the Hydra regeneration assay has certainly applied value as a prescreening assay for developmental toxicity.展开更多
The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicate...The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5 mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn’t reach the effect of chlorine dioxide.展开更多
Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the D...Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the DBPs formation mechanism. A study was, therefore, initiated to investigate the effects of DOM fractions on DBPs formation mechanism. In the chlorination process, organic acids are dominant precursors of total thihalomethanes (TTHM) because of the vc-o and unsaturated structures. Furthermore, the TTHM formation of organic acids was affected by pH more greatly. Based on the fluorescence spectroscopy analysis, DOM fractions contained several fluorescence substances. During chlorination, humic acid-like substances were found to exhibit high chlorine reactivity and hydrophobic organics decomposed to smaller molecules faster than hydrophilic organics even at lower chlorine dosages. Unlike hydrophobic fractions, hydrophilic organics showed no toxicity following chlorination, suggesting that the toxic structures in hydrophihc organics showed high chlorine reactivity during chlorination.展开更多
Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means o...Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means of chlorine, chlorine dioxide, ozone, and ultraviolet was carried out in our laboratory. The residual coliform, bacteria and trihalomethanes, haloacetic acids were determined after disinfection. Results Chlorine had fairly better efficiency on microorganism inactivation than chlorine dioxide with the same dosage. Formation of THMs and HAAs does not exceed the drinking water standard. UV irradiation had good efficiency on microorganism inactivation and good future of application in China. Organic material and ammonia nitrogen was found to be significant on inactivation and DBPs formation. Conclusion Chlorine disinfection seems to be the best available technology for coliform and bacteria inactivation. And it is of fairly low toxicological hazard due to the transformation of monochloramine.展开更多
Chlorine-based sanitizers have seen wide spread use in food sanitation. The reaction of chlorine species with organic matter is a concern for two reasons. Available chlorine can be “used up” by organic compounds res...Chlorine-based sanitizers have seen wide spread use in food sanitation. The reaction of chlorine species with organic matter is a concern for two reasons. Available chlorine can be “used up” by organic compounds resulting in a lower amount of chlorine available for disinfection. Another concern is that some forms of chlorine can react with some organic compounds to form toxic halogenated disinfection byproducts(DBPs). Many studies have been conducted to evaluate the role of hypochlorous acid(HOCl) and hypochlorite ion(OCl–) in the production of DBPs with a particular interest in the production of trihalomethanes(THMs) and haloacetic acids(HAAs). Since most of the chlorine reactions are pH dependent, pH is found to have a significant effect on the formation of chlorine DBPs. In many cases, the concentration of THMs decreases and HAAs increases as pH decreases. pH also plays an important role in the determination of the type and amount of DBPs formed, with lower, more acidic, pHs resulting in the formation of less chloroform. This review summarizes the information from the literature on the role of chlorine-based sanitizers as affected by pH in the formation of different types of DBPs. Alternative novel strategies to minimize the formation of DBPs are also discussed.展开更多
Objective To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Esch...Objective To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Escherichia coli, Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. Results The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. Conclusion The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.展开更多
Microcystins, which represents one kind of cancerogenic organic compounds, is abundant in eutro- phication water. The effects of reaction factors on chlorine dioxide (C102) for removal of low-concentration Micro- cy...Microcystins, which represents one kind of cancerogenic organic compounds, is abundant in eutro- phication water. The effects of reaction factors on chlorine dioxide (C102) for removal of low-concentration Micro- cystin-LR, Microcystin-RR, and Microcystin-YR in water as well as the reaction mechanisms was investigated by using enzyme-linked immunosorbent assay (ELISA) kit and gas chromatography-mass spectrometry (GC-MS). The results showed that MC-LR, MC-RR, and MC-YR could be efficiently decomposed by C102. The degradation efficiency was shown positively correlated to the concen- tration of C102 and reaction time; while the effect of reaction temperature and pH is slight. The kinetic constants and activation energies of the reaction ofMC-LR, MC-RR, and MC-YR with C102 are determined as 459.89, 583.15, 488.43 L.(mol.min)I and 64.78, 53.01, 59.15kJ.mok1, respectively. As indicated by high performance liquid chromatography mass spectrometer (HPLC-MS) analysis, degradation should be accomplished via destruction of Adda group by oxidation, with the formation of dihydroxy substituendums as end products. This study has provided a fundamental demonstration of C102 serving as oxidizing disinfectant to eliminate microcystins from raw water source.展开更多
This study aimed to explore the disinfection of drinking water in trunk water mains, based on published conditions denoted within the Irish Republic. The variables within the study were consumer draw-off rates, trunk ...This study aimed to explore the disinfection of drinking water in trunk water mains, based on published conditions denoted within the Irish Republic. The variables within the study were consumer draw-off rates, trunk main length, pipe diameter, and water temperature. All these factors are known to impact the free chlorine residual in operational supply networks. Based on published conditions obtained within the literature review, 60 hypothetical trunk mains were generated for this study. Of primary concern were the variables that affect the chlorine decay rate;total amount of chlorine decay;available amount of chlorine in the periphery of the trunk main;and the costs associated with effective chlorine disinfection of trunk mains. Based on the analysis performed, the following were the salient observations: 1) Low consumer draw-off rates and increased trunk main length and diameter increased the risk of the free chlorine residual in the periphery of the trunk mains not complying with the Environmental Protection Agency’s (EPA) minimum recommended residual value of 0.1 mg/l (EPA Drinking Water Audit Report, 2014). 2) Increasing the diameter of the trunk main from 125 mm to 180 mm had a negligible effect on the chlorine decay rate. However, increasing the trunk main diameter from 125 mm to 180 mm was shown to have a major impact on the total amount of chlorine decay and free chlorine residual available in the periphery of the main. The key parameters that affected disinfection costs associated with trunk mains include length, diameter and the need for chlorine boosting.展开更多
The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is diff...The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is difficult to achieve sometimes. The authors studied the particle size distribution, contribution of particle-associated Fecal Coliform (F.C.), and their influences on UV disinfection. A combined disinfection process (chlorination with a subsequent UV disinfection) was tested to improve the disinfection effect. The results indicated that the content of suspended solids, especially that of large particles, has a strong impact on UV disinfection efficiency; D>10 μm particles associated F.C. are difficult to be disinfected and are the main part of the tailings of F.C. inactivation curves. Pre-chlorination could decrease the number of particles in the secondary effluent and transform the large particles into small ones, reducing the influence of particles on UV disinfection and enhancing the resistance ability of the combined process to particle loading.展开更多
In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in po...In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in polymer pipes and it is now very common in plumbing and other parts of the drinking water distribution system. For more than 50 years, Polymer & Elastomeric materials have been used ubiquitously in drinking water distribution systems. Polymer & Elastomeric materials have successfully been used in a variety of applications ranging from rubber gaskets, to valves, to hydrants, to fittings. Polymer & Elastomers that degrade more quickly than expected create service problems, make it difficult for utilities to cost efficient plan preventive maintenance programs, and negatively affect customer relations. This review paper gives an insight idea to a reader about the selection of proper polymer & elastomer and predicting its performance in chlorinated water. Also the mechanism of degradation of Polymer & elastomer in chlorine environment and some model of life expectancy of in-service of Polymer & elastomer in various conditions and parameter in chlorinated water were discussed.展开更多
Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivatio...Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivation or destruction of pathogenic organisms through the disruption of the organisms’ normal life processes. The objective of this work is to clean and/or disinfect entire borehole to prepare wells for pump installation. The last water sample was collected after the well disinfec-tion on that time. The results of water chemical analysis are presented in Tables 2-4, and there was nothing found against the specification requirements. After a reaction time of approximately 12 h, the well was cleaned from the sterilization solution by airlifting until chlorine concentration in the water reached 0 mg/l. Then through analyzing the test for samples of water after disinfection and sterilization the wells showed the Iron Bacteria were not seen and the Bacteria Species/Anaerobic Bacteria were absent.展开更多
文摘Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe of the disinfectant powder. Stability test, suspension quantitative bactericidal test, simulation field triM, and animal toxicity test were carded out to observe its bactericidal and toxicological effects. Results The orthogonal experiment showed that the type of water solution had no effect on the disinfectant powder and the best ratio of sodium chlorite to solid acid was 1:3. Ten grams of the disinfectant powder was fully dissolved in 20 mL water for 2 min, and diluted to 500 mL in water. After 5-10 min, the concentration of chlorine dioxide (CIO2) solution was 266 mg/L to 276 mg/L. After stored at 54℃ for 14 d, the average concentration of CIO2 was decreased by 5.03%. Suspension quantitative bactericidal test showed that the average killing logarithm (KL) value for both Staphylococcus aureus and Escherichia coli in 100 mg/L CIO2 solution for 2 min was over 5.00. In simulation field triM, the average descending KL value for Escherichia coli in the solution containing 100 mg/L CIO2 for 5 min was over 3.00. The mouse acute LD50 in the solution 5 times exceeded 5000 mg/kg. The disinfectant powder was not toxic and irritative to rabbit skin and had no mutagenic effect on mouse marrow polychromatic erythrocytes (PCE). Conclusion The stability and bactericidal efficacy of solid chlorine dioxide-based disinfectant powder in single-pack are good. The solution containing 100 mg/L CIO2 can kill vegetative forms of bacteria. The concentration of CIO2 on the disinfecting surface of objects is 100 mg/L. The disinfectant powder is not toxic and irritative.
基金Supported by the National Natural Science Foundation of China,No.81873116。
文摘BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household disinfectants.AIM To summarize the clinical characteristics and treatment effects of chlorine poisoning caused by improper mixing of hypochlorite bleach with acidic cleaning agents.METHODS We retrospectively analyzed baseline and clinical data,clinical symptoms,and treatment methods of seven patients with chlorine poisoning who were admitted to the National Army Poisoning Treatment Center.RESULTS Among the seven patients,the average poisoning time(exposure to admission)was 57 h(4-240 h).All patients were involved in cleaning bathrooms.Chest computed tomography scans revealed bilateral lung effusions or inflammatory changes in five patients.The partial pressure of oxygen decreased in six patients,and respiratory failure occurred in one.Five patients had different degrees of increase in white blood cell count.Humidified oxygen therapy,non-invasive mechanical ventilation,anti-inflammatory corticosteroids,antioxidants,and antibiotics were administered for treatment.The average length of hospital stay was 7 d(4-9 d).All seven patients recovered and were discharged.CONCLUSION Improper mixing of household disinfectants may cause damage to the respiratory system due to chlorine poisoning.Corticosteroids may improve lung exudation in severe cases,and symptomatic supportive treatment should be performed early.
文摘Worldwide epidemiological reports assert that drinking water is a source for infections and Legionella control represents a critical issue in healthcare settings. Chemical disinfections of water networks are control measures that need to be fine-tuned to obtain satisfactory results in large buildings over prolonged time periods. Aim of study is the evaluation of the effect of anolyte and chlorine dioxide, applied in two different hot water networks of a nursing home to manage Legionella risk. Nursing home has two buildings (A and B), with the same point of aqueduct water entrance. From June 2016, following a shock chlorination, the continuous disinfections with chlorine dioxide and anolyte were applied in hot networks of building A and B, respectively. Hot water was sampled at the central heating system and at two points of use for Legionella research, while chemical tests of manganese (Mn), iron (Fe), zinc (Zn) and trihalomethanes compounds (THM) were implemented to evaluate the disinfection by-products presence. Before chlorination Legionella pneumophila sg1 was recovered with a mean count of 2.4 × 104 CFU/L, while chemical compounds concentrations were within the law limits (Directive 98/83/EC). Then the disinfections Legionella was not recovered in both hot water plants. After the disinfection with chlorine dioxide (from June 2016 to May 2018), a statistically significant increase of iron, zinc and THM concentrations was detected in building A (p = 0.012;p = 0.004;p = 0.008). Both disinfectants appear effective against Legionella spp. growth in water network, but anolyte ensures a lower disinfection by-products release.
基金This work was sponsored by National Natural Science Fundation Committee (No. 50238020).
文摘Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus) inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process. The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination. Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.
基金supported by the National Natu-ral Sciences Foundation of China (No. 50525824)the Tianjin Special Innovation Fund (No. 06FZZDSH00900,TJZX1-YW03)the National Water Project (No.2008ZX07314-003)
文摘The effects of ozonation on the formation potential of typical disinfection byproducts (DBPs) and the changes of genotoxicity during post chlorination of tertiary effluent from a sewage treatment plant were investigated. Ozonation enhanced the yields of all detected chlorine DBPs except CHCI3. At a chlorine dose of 5 mg/L, the three brominated THMs and five HAAs increased, while chloroform decreased with the increase of ozone dose from 0 to 10 mg/L (ozone dose in consumption base). At a chlorine dose of 10 mg/L, the two mixed bromochloro species THMs and two dominant HAAs (DCAA and TCAA) increased firstly and then decreased with the increase of ozone dose, with the turning point approximately occurring at an ozone dose of 5 mg/L. The genotoxicity detected using umu test, on the other hand, was removed from 7 Ixg 4-NQO/L to a negligible level by ozonation under an ozone dose of 5 mg/L. Chlorination could further remove the genotoxicity to some extent. It was found that SUVA (UV absorbance divided by DOC concentration) might be used as an indicative parameter for monitoring the removal of genotoxicity during the oxidation.
基金The Hi-Tech Research and Development Program (863) of China (No. 2003AA601120)
文摘Mesocyclops leukarti of zooplankton propagates excessively in eutrophic water body and it cannot be effectively inactivated by the conventional drinking water treatment process. In order to tackle this problem, a study of removal effect on Mesocylops leukarti with chlorine dioxide in a waterworks was performed. The results showed that Mesocyclops leukarti could be effectively removed from water by 1.0 mg/L chlorine dioxide prcoxidation combined with the conventional drinking water treatment process. Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Mesocyclops leukarti. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, was stable at 0.45 mg/L, which is lower than that critical value of the USEPA. GC-MS examination showed that the quantity of organic substance in the water treated by chlorine dioxide obviously decreased. Ames test further revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation ofMesocyclops leukorti can be inactivated effectively and safely by chlorine dioxide pre-oxidation.
文摘Practicability of method for the Hydra regeneration assay on the prescreening teratogenic potential of chlorinated drinking water disinfection by products was studied through both the assays of toxicity of adult Hydra (T) and inhibition of the growth of regeneration Hydra (I) by using chloroform, dichloromethane and chloroacetic acid. The results showed that T 50 / I 50 ratios of chloroform and chloroacetic acid were 2 77 and 6 16 respectively, with teratogenic potential. T 50 / I 50 ratio of dichloromethane was 1.69, with weaker teratogenic potential. These experimental results indicated preliminarily that the Hydra regeneration assay has certainly applied value as a prescreening assay for developmental toxicity.
基金Sponsored by the Foundation of the Key Science and Technology Projections of Harbin (Grant No. 2003AA4CS183).
文摘The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5 mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn’t reach the effect of chlorine dioxide.
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
基金supported by the National Natural Science Foundation of China (No. 50538090)the Funds for Creative Research Groups of China (No. 50621804)the High-Tech Research and Development Program (863) of China (No. 2007AA06Z338).
文摘Dissolved organic matter (DOM) has been identified as precursor for disinfection by-products (DBPs) formation during chlorination. Recently, it has been demonstrated that the characteristics of DOM influence the DBPs formation mechanism. A study was, therefore, initiated to investigate the effects of DOM fractions on DBPs formation mechanism. In the chlorination process, organic acids are dominant precursors of total thihalomethanes (TTHM) because of the vc-o and unsaturated structures. Furthermore, the TTHM formation of organic acids was affected by pH more greatly. Based on the fluorescence spectroscopy analysis, DOM fractions contained several fluorescence substances. During chlorination, humic acid-like substances were found to exhibit high chlorine reactivity and hydrophobic organics decomposed to smaller molecules faster than hydrophilic organics even at lower chlorine dosages. Unlike hydrophobic fractions, hydrophilic organics showed no toxicity following chlorination, suggesting that the toxic structures in hydrophihc organics showed high chlorine reactivity during chlorination.
文摘Objective To evaluate the disinfection of wastewater in China. Methods During the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means of chlorine, chlorine dioxide, ozone, and ultraviolet was carried out in our laboratory. The residual coliform, bacteria and trihalomethanes, haloacetic acids were determined after disinfection. Results Chlorine had fairly better efficiency on microorganism inactivation than chlorine dioxide with the same dosage. Formation of THMs and HAAs does not exceed the drinking water standard. UV irradiation had good efficiency on microorganism inactivation and good future of application in China. Organic material and ammonia nitrogen was found to be significant on inactivation and DBPs formation. Conclusion Chlorine disinfection seems to be the best available technology for coliform and bacteria inactivation. And it is of fairly low toxicological hazard due to the transformation of monochloramine.
文摘Chlorine-based sanitizers have seen wide spread use in food sanitation. The reaction of chlorine species with organic matter is a concern for two reasons. Available chlorine can be “used up” by organic compounds resulting in a lower amount of chlorine available for disinfection. Another concern is that some forms of chlorine can react with some organic compounds to form toxic halogenated disinfection byproducts(DBPs). Many studies have been conducted to evaluate the role of hypochlorous acid(HOCl) and hypochlorite ion(OCl–) in the production of DBPs with a particular interest in the production of trihalomethanes(THMs) and haloacetic acids(HAAs). Since most of the chlorine reactions are pH dependent, pH is found to have a significant effect on the formation of chlorine DBPs. In many cases, the concentration of THMs decreases and HAAs increases as pH decreases. pH also plays an important role in the determination of the type and amount of DBPs formed, with lower, more acidic, pHs resulting in the formation of less chloroform. This review summarizes the information from the literature on the role of chlorine-based sanitizers as affected by pH in the formation of different types of DBPs. Alternative novel strategies to minimize the formation of DBPs are also discussed.
基金This work was part of a project (No. 50708050)supported by the National Natural Science Foundation of China.
文摘Objective To introduce synergetic inactivation of microorganisms in drinking water by short-term free chlorination for less than 15 minutes followed by monochloramination. Methods Indicator microorganisms such as Escherichia coli, Staphylococcus aureus, Candida albicans, and spores of Bacillus subtilis were used to assess the efficiency of sequential chlorination and free chlorination. Results The sequential chlorination was more efficient in inactivating these microorganisms than free chlorination, indicating that synergy was provided by free chlorine and monochloramine. Ammonia addition time, temperature and pH had influences on this synergy. Conclusion The possible mechanism of this synergy might involve three aspects: free chlorine causing sublethal injury to microorganisms and monochloramine further inactivating them; different ability of free chlorine and monochloramine to penetrate and inactivate microorganism congeries; and higher concentration of residual chlorine in sequential chlorination than in free chlorination.
文摘Microcystins, which represents one kind of cancerogenic organic compounds, is abundant in eutro- phication water. The effects of reaction factors on chlorine dioxide (C102) for removal of low-concentration Micro- cystin-LR, Microcystin-RR, and Microcystin-YR in water as well as the reaction mechanisms was investigated by using enzyme-linked immunosorbent assay (ELISA) kit and gas chromatography-mass spectrometry (GC-MS). The results showed that MC-LR, MC-RR, and MC-YR could be efficiently decomposed by C102. The degradation efficiency was shown positively correlated to the concen- tration of C102 and reaction time; while the effect of reaction temperature and pH is slight. The kinetic constants and activation energies of the reaction ofMC-LR, MC-RR, and MC-YR with C102 are determined as 459.89, 583.15, 488.43 L.(mol.min)I and 64.78, 53.01, 59.15kJ.mok1, respectively. As indicated by high performance liquid chromatography mass spectrometer (HPLC-MS) analysis, degradation should be accomplished via destruction of Adda group by oxidation, with the formation of dihydroxy substituendums as end products. This study has provided a fundamental demonstration of C102 serving as oxidizing disinfectant to eliminate microcystins from raw water source.
文摘This study aimed to explore the disinfection of drinking water in trunk water mains, based on published conditions denoted within the Irish Republic. The variables within the study were consumer draw-off rates, trunk main length, pipe diameter, and water temperature. All these factors are known to impact the free chlorine residual in operational supply networks. Based on published conditions obtained within the literature review, 60 hypothetical trunk mains were generated for this study. Of primary concern were the variables that affect the chlorine decay rate;total amount of chlorine decay;available amount of chlorine in the periphery of the trunk main;and the costs associated with effective chlorine disinfection of trunk mains. Based on the analysis performed, the following were the salient observations: 1) Low consumer draw-off rates and increased trunk main length and diameter increased the risk of the free chlorine residual in the periphery of the trunk mains not complying with the Environmental Protection Agency’s (EPA) minimum recommended residual value of 0.1 mg/l (EPA Drinking Water Audit Report, 2014). 2) Increasing the diameter of the trunk main from 125 mm to 180 mm had a negligible effect on the chlorine decay rate. However, increasing the trunk main diameter from 125 mm to 180 mm was shown to have a major impact on the total amount of chlorine decay and free chlorine residual available in the periphery of the main. The key parameters that affected disinfection costs associated with trunk mains include length, diameter and the need for chlorine boosting.
文摘The concentration of suspended solids in the secondary effluent often varies widely, leading to frequent adjustment of the UV dosage to meet the disinfection criterion. In addition, a desired disinfection rate is difficult to achieve sometimes. The authors studied the particle size distribution, contribution of particle-associated Fecal Coliform (F.C.), and their influences on UV disinfection. A combined disinfection process (chlorination with a subsequent UV disinfection) was tested to improve the disinfection effect. The results indicated that the content of suspended solids, especially that of large particles, has a strong impact on UV disinfection efficiency; D>10 μm particles associated F.C. are difficult to be disinfected and are the main part of the tailings of F.C. inactivation curves. Pre-chlorination could decrease the number of particles in the secondary effluent and transform the large particles into small ones, reducing the influence of particles on UV disinfection and enhancing the resistance ability of the combined process to particle loading.
文摘In water industry, the chlorine is mostly used as a disinfectant agent. The chlorine present in potable water as a disinfectant has been reported to reduce the lifetime of contact polymeric material. This occurs in polymer pipes and it is now very common in plumbing and other parts of the drinking water distribution system. For more than 50 years, Polymer & Elastomeric materials have been used ubiquitously in drinking water distribution systems. Polymer & Elastomeric materials have successfully been used in a variety of applications ranging from rubber gaskets, to valves, to hydrants, to fittings. Polymer & Elastomers that degrade more quickly than expected create service problems, make it difficult for utilities to cost efficient plan preventive maintenance programs, and negatively affect customer relations. This review paper gives an insight idea to a reader about the selection of proper polymer & elastomer and predicting its performance in chlorinated water. Also the mechanism of degradation of Polymer & elastomer in chlorine environment and some model of life expectancy of in-service of Polymer & elastomer in various conditions and parameter in chlorinated water were discussed.
文摘Disinfection is an important step in ensuring that water is safe to drink. Well disinfection is used to inactivate or control bacteria populations in a well and the distribution system. Disinfection is the inactivation or destruction of pathogenic organisms through the disruption of the organisms’ normal life processes. The objective of this work is to clean and/or disinfect entire borehole to prepare wells for pump installation. The last water sample was collected after the well disinfec-tion on that time. The results of water chemical analysis are presented in Tables 2-4, and there was nothing found against the specification requirements. After a reaction time of approximately 12 h, the well was cleaned from the sterilization solution by airlifting until chlorine concentration in the water reached 0 mg/l. Then through analyzing the test for samples of water after disinfection and sterilization the wells showed the Iron Bacteria were not seen and the Bacteria Species/Anaerobic Bacteria were absent.