In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plate...In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities.We found that after long term gravel-sand mulch,compared with bare ground,soil organic matter,alkali nitrogen,conductivity decreased,while pH and soil moisture increased.Urease,saccharase and catalase decreased with increased mulch thickness,while alkaline phosphatase was reversed.The results of Illumina MiSeq sequencing shows that after gravel-sand mulch,the bacterial and fungal community structure was different from bare land,and the diversity was reduced.Compared with bare land,the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness,and Actinobacteria was opposite.Also,at the fungal genus level,Fusarium abundance was significantly reduced,and Remersonia was significantly increased,compared with bare land.Redundancy analysis(RDA)revealed that soil environmental factors were important drivers of bacterial community changes.Overall,this study revealed some of the reasons for soil degradation after long term gravel-sand mulch.Therefore,it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.展开更多
Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, signific...Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.展开更多
Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jins...Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groups of soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in the dry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density of soil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only in the dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than those of Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase, urease and alkaline phosphatase declined with the degradation degree and showed a significant decline with depth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase and acid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that the characteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators to show the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicators was highly significant.展开更多
Objective Pesticides has gain an increasing awareness because of it is becoming a serious environmental problem and come to threaten the health of humanbeing.The effect of five pesticides(zineb,copforce,the mixture of...Objective Pesticides has gain an increasing awareness because of it is becoming a serious environmental problem and come to threaten the health of humanbeing.The effect of five pesticides(zineb,copforce,the mixture of carbendazim and mancozeb,hymexazol)on soil bacteria,fungi,actinomyces,and Five specific enzymes were chosen for investigation(urease,dehydrogenase,invertase,acid phosphates and protease).Methods The enumeration of the soil micro flora was done by the dilution plate method;The enzyme activity was determined by traditional methods.Shannon-Wiener index as well as 16S rRNA-PCR amplification and DGGE fingerprinting was used for detection of shift in microbial community diversity in pesticides contaminated agricultural soil.Results The outcome showed that the microbial diversity was significantly changed after the application of pesticides,the effect of pesticides on microbe had a order from top to bottom:bacteria-actinomyces-fungi.Conclusions Our results indicate that the use of the pesticides hymexazol resulted in an altered soil community structure,in particular for the actinomyces.Invertase was markedly inhibited by hymexazol,zineb,carbendazim and mancozeb and the inhibiting rates were varied between 30.30% and 21.21%;Urease activity was also inhibited significantly by hymexazol,the inhibiting rate was 37.67%;Protease activity was markedly inhibited by zineb and hymexazol,the inhibiting rates were 27.27% and 18.18% respectively;Phosphates activity was inhibited significantly by hymexazol,zineb,carbendazim and mancozeb,the inhibiting rates were range from 22.12%-3.54%;Dehydrogenase activity was not significantly affected by pesticides.Meanwhile,the correlation of all indexes were analyzed,the data suggested that all indexes existed certain correlation.展开更多
The diversity of vegetation configuration is the key to ecological restoration in open-pit coal mine dump.However,the recovery outcomes of different areas with the same vegetation assemblage pattern are completely dif...The diversity of vegetation configuration is the key to ecological restoration in open-pit coal mine dump.However,the recovery outcomes of different areas with the same vegetation assemblage pattern are completely different after long-term evolution.Therefore,understanding the causes of differential vegetation recovery and the mechanism of plant succession is of great significance to the ecological restoration of mines.Three Pinus tabulaeformis plantations with similar initial site conditions and restoration measures but with different secondary succession processes were selected from the open-pit coal mine dump that has been restored for 30 years.Soil physicochemical properties,enzyme activities,vegetation and microbial features were investigated,while the structural equation models were established to explore the interactions between plants,soil and microbes.The results showed that original vegetation configuration and soil nutrient conditions were altered due to secondary succession.With the advancement of the secondary succession process,the coverage of plants increased from 34.8%to 95.5%(P<0.05),soil organic matter increased from 9.30 g kg^(-1)to 21.13 g kg^(-1)(P<0.05),and total nitrogen increased from 0.38 g kg^(-1)to 1.01 g kg^(-1)(P<0.05).The activities of soil urease and p-glucosidase were increased by 1.7-fold and 53.26%,respectively.Besides,the secondary succession also changed the soil microbial community structure and function.The relative abundance of Nitrospira genus which dominates the nitrification increased 5.2-fold.The results showed that urease andβ-glucosidase promoted the increase of vegetation diversity and biomass by promoting the accumulation of soil organic matter and nitrate nitrogen,which promoted the ecological restoration of mine dumps.展开更多
本文以典型的衡阳紫色土丘陵坡地不同植被恢复阶段为研究对象,采用空间代替时间序列方法,选用立地条件基本相似的草坡阶段(Grassplot,GT)、灌草阶段(Frutex and grassplot,FG)、灌丛阶段(Frutex,FX)和乔灌阶段(Arbor and frutex,AF),通...本文以典型的衡阳紫色土丘陵坡地不同植被恢复阶段为研究对象,采用空间代替时间序列方法,选用立地条件基本相似的草坡阶段(Grassplot,GT)、灌草阶段(Frutex and grassplot,FG)、灌丛阶段(Frutex,FX)和乔灌阶段(Arbor and frutex,AF),通过调查取样和实验分析,对不同植被恢复阶段的土壤酶、养分与微生物及其相关性进行了研究。结果表明,1)随着恢复阶段的演替,脲酶、多酚氧化酶、蔗糖酶与过氧化氢酶的活性显著增加,在每个恢复阶段,脲酶、多酚氧化酶、蔗糖酶与过氧化氢酶活性随着土层的加深而逐渐减弱,脲酶与多酚氧化酶、蔗糖酶与过氧化氢酶活性呈显著正相关关系,蔗糖酶与脲酶和多酚氧化酶呈极显著正相关。2)随着恢复阶段的演替,土壤养分的时空变化与土壤酶活性的变化趋势基本一致,土壤有机碳、全氮与碱解氮含量呈上升趋势,土壤pH随植被恢复和演替而降低,随土壤深度的增加而上升,与土壤酶活性的变化趋势相反;脲酶与有机碳、全氮、碱解氮呈极显著正相关,与pH呈显著负相关,多酚氧化酶与有机碳、碱解氮呈极显著正相关,与全氮、速效磷、速效钾呈显著正相关,与pH呈显著负相关,蔗糖酶活性与有机碳、全氮、碱解氮、速效磷、速效钾呈显著正相关。3)不同恢复阶段土壤细菌数量最多,真菌数量和放线菌数量与细菌数量的变化趋势各不相同;细菌平均数量为AF>FX>FG>GT,真菌数量为FG>GT>FX>AF,放线菌数量为GT>FX>FG>AF。4)主成分分析揭示脲酶与多酚氧化酶可作为衡阳紫色土丘陵坡地土壤质量评价的指标。研究结果将丰富该地区植物生态学与恢复生态学的内容,为衡阳紫色土丘陵坡地生态系统的恢复与重建提供了重要依据。展开更多
以青藏高原高寒草甸4种主要草地类型为研究对象,分析了不同植被类型土壤的理化性质、土壤微生物数量、土壤酶活性与生态系统功能间的相互关系。结果表明,不同植被类型群落的土壤特性存在明显差异。藏嵩草沼泽化草甸0~40 cm 土层土壤...以青藏高原高寒草甸4种主要草地类型为研究对象,分析了不同植被类型土壤的理化性质、土壤微生物数量、土壤酶活性与生态系统功能间的相互关系。结果表明,不同植被类型群落的土壤特性存在明显差异。藏嵩草沼泽化草甸0~40 cm 土层土壤容重、土壤含水量、土壤有机质、土壤全氮和土壤速效氮含量明显不同于矮嵩草草甸、小嵩草草甸和金露梅灌丛草甸,土壤物理特性的改变(土壤养分、土壤容重、土壤湿度等)会引起植被组成、物种多样性变化;细菌数量和真菌数量与植物群落地上生物量之间存在显著正相关关系(P<0.05)、放线菌数量与生物量之间的相关性不显著,不同植被类型的群落生物量影响着土壤微生物数量和组成;不同草地类型植物群落地上生物量与土壤酶活性(磷酸酶、过氧化氢酶、蛋白酶、脲酶等)之间存在显著的正相关关系(P<0.05),土壤酶活性对土壤有机质、腐殖质等的合成起到了积极作用。土壤酶活性的高低不仅影响了群落生物量,同时也影响群落物种多样性(物种丰富度),土壤酶活性的高低通过影响土壤微生物种类和数量、土壤养分含量,从而间接影响群落物种多样性。展开更多
基金This study was funded by the National Key R&D Program(Grant No.2016YFC0501403-3).
文摘In semi-arid areas of China,gravel and sand mulch is a farming technique with a long history.In this study,a sample survey was conducted on long term gravel sand mulch observational fields in the Northwest Loess Plateau to determine the effects of long term mulch on soil microbial and soil enzyme activities.We found that after long term gravel-sand mulch,compared with bare ground,soil organic matter,alkali nitrogen,conductivity decreased,while pH and soil moisture increased.Urease,saccharase and catalase decreased with increased mulch thickness,while alkaline phosphatase was reversed.The results of Illumina MiSeq sequencing shows that after gravel-sand mulch,the bacterial and fungal community structure was different from bare land,and the diversity was reduced.Compared with bare land,the bacteria Proteobacteria and Acidobacteria abundance increased with increased thickness,and Actinobacteria was opposite.Also,at the fungal genus level,Fusarium abundance was significantly reduced,and Remersonia was significantly increased,compared with bare land.Redundancy analysis(RDA)revealed that soil environmental factors were important drivers of bacterial community changes.Overall,this study revealed some of the reasons for soil degradation after long term gravel-sand mulch.Therefore,it is recommended that the addition of exogenous soil nutrients after long term gravel-sand can help improve soil quality.
文摘Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P〈0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P〈0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P〈0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Km' (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Km' bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.
基金Project supported by the Foundation for 100 Distinguished Young Scientists, the Chinese Academy of Sciences (No. B010108) the Foundation for the Cooperation Between the Chinese Academy of Sciences Yunnan Province.
文摘Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in the dry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of the Jinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groups of soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in the dry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density of soil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only in the dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than those of Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase, urease and alkaline phosphatase declined with the degradation degree and showed a significant decline with depth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase and acid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that the characteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators to show the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicators was highly significant.
文摘Objective Pesticides has gain an increasing awareness because of it is becoming a serious environmental problem and come to threaten the health of humanbeing.The effect of five pesticides(zineb,copforce,the mixture of carbendazim and mancozeb,hymexazol)on soil bacteria,fungi,actinomyces,and Five specific enzymes were chosen for investigation(urease,dehydrogenase,invertase,acid phosphates and protease).Methods The enumeration of the soil micro flora was done by the dilution plate method;The enzyme activity was determined by traditional methods.Shannon-Wiener index as well as 16S rRNA-PCR amplification and DGGE fingerprinting was used for detection of shift in microbial community diversity in pesticides contaminated agricultural soil.Results The outcome showed that the microbial diversity was significantly changed after the application of pesticides,the effect of pesticides on microbe had a order from top to bottom:bacteria-actinomyces-fungi.Conclusions Our results indicate that the use of the pesticides hymexazol resulted in an altered soil community structure,in particular for the actinomyces.Invertase was markedly inhibited by hymexazol,zineb,carbendazim and mancozeb and the inhibiting rates were varied between 30.30% and 21.21%;Urease activity was also inhibited significantly by hymexazol,the inhibiting rate was 37.67%;Protease activity was markedly inhibited by zineb and hymexazol,the inhibiting rates were 27.27% and 18.18% respectively;Phosphates activity was inhibited significantly by hymexazol,zineb,carbendazim and mancozeb,the inhibiting rates were range from 22.12%-3.54%;Dehydrogenase activity was not significantly affected by pesticides.Meanwhile,the correlation of all indexes were analyzed,the data suggested that all indexes existed certain correlation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807515,41907405,and 51974313)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21-2118).
文摘The diversity of vegetation configuration is the key to ecological restoration in open-pit coal mine dump.However,the recovery outcomes of different areas with the same vegetation assemblage pattern are completely different after long-term evolution.Therefore,understanding the causes of differential vegetation recovery and the mechanism of plant succession is of great significance to the ecological restoration of mines.Three Pinus tabulaeformis plantations with similar initial site conditions and restoration measures but with different secondary succession processes were selected from the open-pit coal mine dump that has been restored for 30 years.Soil physicochemical properties,enzyme activities,vegetation and microbial features were investigated,while the structural equation models were established to explore the interactions between plants,soil and microbes.The results showed that original vegetation configuration and soil nutrient conditions were altered due to secondary succession.With the advancement of the secondary succession process,the coverage of plants increased from 34.8%to 95.5%(P<0.05),soil organic matter increased from 9.30 g kg^(-1)to 21.13 g kg^(-1)(P<0.05),and total nitrogen increased from 0.38 g kg^(-1)to 1.01 g kg^(-1)(P<0.05).The activities of soil urease and p-glucosidase were increased by 1.7-fold and 53.26%,respectively.Besides,the secondary succession also changed the soil microbial community structure and function.The relative abundance of Nitrospira genus which dominates the nitrification increased 5.2-fold.The results showed that urease andβ-glucosidase promoted the increase of vegetation diversity and biomass by promoting the accumulation of soil organic matter and nitrate nitrogen,which promoted the ecological restoration of mine dumps.
文摘本文以典型的衡阳紫色土丘陵坡地不同植被恢复阶段为研究对象,采用空间代替时间序列方法,选用立地条件基本相似的草坡阶段(Grassplot,GT)、灌草阶段(Frutex and grassplot,FG)、灌丛阶段(Frutex,FX)和乔灌阶段(Arbor and frutex,AF),通过调查取样和实验分析,对不同植被恢复阶段的土壤酶、养分与微生物及其相关性进行了研究。结果表明,1)随着恢复阶段的演替,脲酶、多酚氧化酶、蔗糖酶与过氧化氢酶的活性显著增加,在每个恢复阶段,脲酶、多酚氧化酶、蔗糖酶与过氧化氢酶活性随着土层的加深而逐渐减弱,脲酶与多酚氧化酶、蔗糖酶与过氧化氢酶活性呈显著正相关关系,蔗糖酶与脲酶和多酚氧化酶呈极显著正相关。2)随着恢复阶段的演替,土壤养分的时空变化与土壤酶活性的变化趋势基本一致,土壤有机碳、全氮与碱解氮含量呈上升趋势,土壤pH随植被恢复和演替而降低,随土壤深度的增加而上升,与土壤酶活性的变化趋势相反;脲酶与有机碳、全氮、碱解氮呈极显著正相关,与pH呈显著负相关,多酚氧化酶与有机碳、碱解氮呈极显著正相关,与全氮、速效磷、速效钾呈显著正相关,与pH呈显著负相关,蔗糖酶活性与有机碳、全氮、碱解氮、速效磷、速效钾呈显著正相关。3)不同恢复阶段土壤细菌数量最多,真菌数量和放线菌数量与细菌数量的变化趋势各不相同;细菌平均数量为AF>FX>FG>GT,真菌数量为FG>GT>FX>AF,放线菌数量为GT>FX>FG>AF。4)主成分分析揭示脲酶与多酚氧化酶可作为衡阳紫色土丘陵坡地土壤质量评价的指标。研究结果将丰富该地区植物生态学与恢复生态学的内容,为衡阳紫色土丘陵坡地生态系统的恢复与重建提供了重要依据。
文摘以青藏高原高寒草甸4种主要草地类型为研究对象,分析了不同植被类型土壤的理化性质、土壤微生物数量、土壤酶活性与生态系统功能间的相互关系。结果表明,不同植被类型群落的土壤特性存在明显差异。藏嵩草沼泽化草甸0~40 cm 土层土壤容重、土壤含水量、土壤有机质、土壤全氮和土壤速效氮含量明显不同于矮嵩草草甸、小嵩草草甸和金露梅灌丛草甸,土壤物理特性的改变(土壤养分、土壤容重、土壤湿度等)会引起植被组成、物种多样性变化;细菌数量和真菌数量与植物群落地上生物量之间存在显著正相关关系(P<0.05)、放线菌数量与生物量之间的相关性不显著,不同植被类型的群落生物量影响着土壤微生物数量和组成;不同草地类型植物群落地上生物量与土壤酶活性(磷酸酶、过氧化氢酶、蛋白酶、脲酶等)之间存在显著的正相关关系(P<0.05),土壤酶活性对土壤有机质、腐殖质等的合成起到了积极作用。土壤酶活性的高低不仅影响了群落生物量,同时也影响群落物种多样性(物种丰富度),土壤酶活性的高低通过影响土壤微生物种类和数量、土壤养分含量,从而间接影响群落物种多样性。