Measurements of three chlorofluorocarbons (CFCs): trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and trichlorotrifluoroethane (CFC-113), along with methyl chloroform (CH 3CCl 3) and carbon tetrachlo...Measurements of three chlorofluorocarbons (CFCs): trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and trichlorotrifluoroethane (CFC-113), along with methyl chloroform (CH 3CCl 3) and carbon tetrachloride (CCl 4) were made in water samples from Lake Washington, using Electron Capture-Gas Chromatography (EC-GC). The samples were collected in mid-autumn, a period when the lake’s upper layer undergoes rapid cooling. At the time of sampling, a strong vertical temperature gradient was present in the lake, with surface temperatures of ~14℃, and near bottom (50 meters) temperatures of ~8℃. The concentrations of dissolved CFC-12 and CFC-11 increased with depth, as expected from the higher solubilities of these gases at lower temperatures. Atmospheric measurements made at the sampling site at the time of the cruise, showed that CFC-11 and CFC-12 saturations in the near surface samples were 100 % and 106%, respectively. For the deepest sample (52 meters) CFC-11 and CFC-12 saturations were 102 % and 126 %. Because the surface layer of the lake responds to changes in atmospheric CFCs on a time scale of several weeks, the higher than equilibrium concentrations of CFC-12 observed at the time of sampling may reflect earlier episodes of elevated levels of atmospheric CFC-12 in this urban area. High concentrations of dissolved CFCs in runoff or industrial effluent might also lead to elevated CFC levels in the lake. The cold, deep water of Lake Washington is relatively isolated from the effects of surface gas exchange except during winter, and the supersaturations observed in the deep layer may reflect periods of elevated atmospheric CFC-12 levels from the previous winter season. These results were compared to summertime profiles of CFC-11 and CFC-12 made in 1994.展开更多
Functional-group-transfer strategies that avoid the use of unsustainable chemicals are attractive for the development of green methodologies.Chlorofluorocarbons(CFCs)not only contribute to the depletion of the stratos...Functional-group-transfer strategies that avoid the use of unsustainable chemicals are attractive for the development of green methodologies.Chlorofluorocarbons(CFCs)not only contribute to the depletion of the stratospheric ozone layer,but their gaseous nature also poses a serious threat in scientific laboratories.Hence,the design of effective and sustainable alternatives to CFCs is highly desirable.Herein,a practical CFC transfer platform for the addition of both a fluoroalkyl group and a chlorine substituent across alkenes by a photomediated redox-neutral manifold using bench-stable and easy-to-handle oxime-based surrogates is reported.The distinct reactivity of these tunable reagents allows for their single-electron reduction to trigger fragmentation driven by benzonitrile formation and loss of carbon dioxide.The other fragments released in that step,namely an electrophilic fluoroalkyl radical and a nucleophilic chloride anion,are subsequently transferred onto alkenes by a radical-ionic mechanism to deliver the desired chlorofluorocarbon products.展开更多
Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free...Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported.Herein,using polydivinylbenzene(PDVB)as an easily available precursor,a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Bronsted acid(trifluoromethanesulfonic acid).The afforded material(F-PDVB)featured high fluorine content(22 at.%),large surface area(771 m^(2)·g^(-1)),and good chemical/thermal stability,rendering them as promising candidates for the adsorption of CO_(2),hydrocarbons,fluorocarbons,and chlorofluorocarbons,with weight capacities up to 520 wt.%being achieved.This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers(F-HCPs)from rigid aromatic monomers.The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.展开更多
文摘Measurements of three chlorofluorocarbons (CFCs): trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and trichlorotrifluoroethane (CFC-113), along with methyl chloroform (CH 3CCl 3) and carbon tetrachloride (CCl 4) were made in water samples from Lake Washington, using Electron Capture-Gas Chromatography (EC-GC). The samples were collected in mid-autumn, a period when the lake’s upper layer undergoes rapid cooling. At the time of sampling, a strong vertical temperature gradient was present in the lake, with surface temperatures of ~14℃, and near bottom (50 meters) temperatures of ~8℃. The concentrations of dissolved CFC-12 and CFC-11 increased with depth, as expected from the higher solubilities of these gases at lower temperatures. Atmospheric measurements made at the sampling site at the time of the cruise, showed that CFC-11 and CFC-12 saturations in the near surface samples were 100 % and 106%, respectively. For the deepest sample (52 meters) CFC-11 and CFC-12 saturations were 102 % and 126 %. Because the surface layer of the lake responds to changes in atmospheric CFCs on a time scale of several weeks, the higher than equilibrium concentrations of CFC-12 observed at the time of sampling may reflect earlier episodes of elevated levels of atmospheric CFC-12 in this urban area. High concentrations of dissolved CFCs in runoff or industrial effluent might also lead to elevated CFC levels in the lake. The cold, deep water of Lake Washington is relatively isolated from the effects of surface gas exchange except during winter, and the supersaturations observed in the deep layer may reflect periods of elevated atmospheric CFC-12 levels from the previous winter season. These results were compared to summertime profiles of CFC-11 and CFC-12 made in 1994.
基金by the Alexander von Humboldt Foundation(postdoctoral fellowship to M.Z.,2021-2023)in part by the Deutsche Forschungsgemeinschaft(grant no.Oe 249/26-1)is gratefully acknowledged+1 种基金M.Z.is also grateful for financial support from the University of Science and Technology of China(grant no.KY9990000197)M.O.is indebted to the Einstein Foundation Berlin for an endowed professorship.
文摘Functional-group-transfer strategies that avoid the use of unsustainable chemicals are attractive for the development of green methodologies.Chlorofluorocarbons(CFCs)not only contribute to the depletion of the stratospheric ozone layer,but their gaseous nature also poses a serious threat in scientific laboratories.Hence,the design of effective and sustainable alternatives to CFCs is highly desirable.Herein,a practical CFC transfer platform for the addition of both a fluoroalkyl group and a chlorine substituent across alkenes by a photomediated redox-neutral manifold using bench-stable and easy-to-handle oxime-based surrogates is reported.The distinct reactivity of these tunable reagents allows for their single-electron reduction to trigger fragmentation driven by benzonitrile formation and loss of carbon dioxide.The other fragments released in that step,namely an electrophilic fluoroalkyl radical and a nucleophilic chloride anion,are subsequently transferred onto alkenes by a radical-ionic mechanism to deliver the desired chlorofluorocarbon products.
基金supported financially by the Division of Chemical Sciences,Geosciences,and Biosciences,Office of Basic Energy Sciences,US Department of Energy.
文摘Fluorinated porous organic networks(F-PONs)have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported.Herein,using polydivinylbenzene(PDVB)as an easily available precursor,a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Bronsted acid(trifluoromethanesulfonic acid).The afforded material(F-PDVB)featured high fluorine content(22 at.%),large surface area(771 m^(2)·g^(-1)),and good chemical/thermal stability,rendering them as promising candidates for the adsorption of CO_(2),hydrocarbons,fluorocarbons,and chlorofluorocarbons,with weight capacities up to 520 wt.%being achieved.This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers(F-HCPs)from rigid aromatic monomers.The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.