The main purpose of this research is to provide a theoretical foundation for the screening of drought-resistant soybean varieties and to establish an efficient method to detect the PSII actual photochemical quantum yi...The main purpose of this research is to provide a theoretical foundation for the screening of drought-resistant soybean varieties and to establish an efficient method to detect the PSII actual photochemical quantum yields efficiently.Three soybean varieties were compared in this experiment after 15 d when they were planted in a greenhouse.These varieties were then exposed to light drought stress(LD)and serious drought stress(SD)conditions.With five times’measurement,chlorophyll fluorescence and soil-plant analysis development considered as the main basis for this study.Several parameters in SD conditions significantly reduced,such as net photosynthetic rates(Pn),stomatal conductance(Gs),PSII primary light energy conversion efficiency(Fv/FM),PSII actual photochemical quantum yields[Y(II)],photochemical quenching coefficient(qP)and non-photochemical quenching coefficient(qN).The soybeans in the seedling stage adapted to the inhibitory effect of drought stress on photosynthesis through stomatal limitation.Under serious drought stress,non-stomatal limitation damaged the plant photosynthetic system.The amplitudes of Pn and Y(II)of drought-resistant Qihuang 35 were lower than those of the two other varieties.Based on the data of this study,a new method had been developed to detect Y(II)which reflected the photosynthetic capacity of plant,R=0.85989,u=0.048803 when using multiple linear regression,and R=0.84285,u=0.054739 when using partial least square regression.展开更多
[Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of d...[Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze the stress at different spots of a single leaf simultaneously. [Result] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that: ~1~) the maximal photochemical efficiency (Fv/Fm) and non- photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR), photochemical quenching (qP) and quantum efficiency of PSII photochemistry ((φPSII); (2) the differences of these parameters were more ob- vious among different spots of water-stressed leaves; (3) the discrete degrees of the species with strong resitances decreased significantly. [Conclusion] This study lays the foundation for the further research on the response of plants to drought stress using chlorophyll fluorescence imaging technique.展开更多
基金supported by the Beijing Academy of Agriculture and Forestry Sciences Program(No.KJCX20170418)Natural Science Foundation of China(31601216)Beijing Municipal Science and Technology Project(D151100004215002).
文摘The main purpose of this research is to provide a theoretical foundation for the screening of drought-resistant soybean varieties and to establish an efficient method to detect the PSII actual photochemical quantum yields efficiently.Three soybean varieties were compared in this experiment after 15 d when they were planted in a greenhouse.These varieties were then exposed to light drought stress(LD)and serious drought stress(SD)conditions.With five times’measurement,chlorophyll fluorescence and soil-plant analysis development considered as the main basis for this study.Several parameters in SD conditions significantly reduced,such as net photosynthetic rates(Pn),stomatal conductance(Gs),PSII primary light energy conversion efficiency(Fv/FM),PSII actual photochemical quantum yields[Y(II)],photochemical quenching coefficient(qP)and non-photochemical quenching coefficient(qN).The soybeans in the seedling stage adapted to the inhibitory effect of drought stress on photosynthesis through stomatal limitation.Under serious drought stress,non-stomatal limitation damaged the plant photosynthetic system.The amplitudes of Pn and Y(II)of drought-resistant Qihuang 35 were lower than those of the two other varieties.Based on the data of this study,a new method had been developed to detect Y(II)which reflected the photosynthetic capacity of plant,R=0.85989,u=0.048803 when using multiple linear regression,and R=0.84285,u=0.054739 when using partial least square regression.
基金Supported by the Major Program for the West Action Projects of the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-XB2-08)the Science-Technology Foundation of Zealquest(ZQFD200705)~~
文摘[Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze the stress at different spots of a single leaf simultaneously. [Result] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that: ~1~) the maximal photochemical efficiency (Fv/Fm) and non- photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR), photochemical quenching (qP) and quantum efficiency of PSII photochemistry ((φPSII); (2) the differences of these parameters were more ob- vious among different spots of water-stressed leaves; (3) the discrete degrees of the species with strong resitances decreased significantly. [Conclusion] This study lays the foundation for the further research on the response of plants to drought stress using chlorophyll fluorescence imaging technique.