The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong li...The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).展开更多
Transglutaminases (TGases, EC 2.3.2.13) catalyse posttranslational modification of proteins by establishing ε-(γ-glutamyl) links and covalent conjugation of polyamines. In plants, the functionality of these enzymes ...Transglutaminases (TGases, EC 2.3.2.13) catalyse posttranslational modification of proteins by establishing ε-(γ-glutamyl) links and covalent conjugation of polyamines. In plants, the functionality of these enzymes is scarcely known. The maize transglutaminase gene (tgz), the only cloned plant TGase, produces major alterations in thylakoid membrane architecture when the transglutaminase (chlTGZ) protein was over-expressed in tobacco chloroplasts, significantly increasing the number of grana stacked layers. Here we demonstrate that nuclear transformation of rice plants starting from a tgz gene truncated in 17 N-terminal aas (tgzt) non altered chloroplast thylakoid structures. F3 transformed plants were analysed for TGase activity, chlTGZ presence and tgzt transcription levels. Transformed plants exhibited double the in vitro TGase activity of the non-transformed plants. Immunoblot and quantitative RT-PCR analysis results of tgzt-rice plants grown under different illumination periods revealed that chlTGZ maintains its differential expression depending on the light regime. Nevertheless, the maize protein was localised by confocal microscopy in the cell wall of transformed rice cells. TEM analyses of the transformed cells showed normal, non-altered chloroplast thylakoid structures with the maize protein preferentially located in the cell walls. The results confirmed that the tgz eliminated sequence is essential for chloroplast targeting, being its absence sufficient to the lack of protein expression in its original plastidal compartment. Interestingly, the immunolocalization of a putative endogenous rice TGase protein is also showed. These data give further information on plant TGase functionality and its relationship to photosynthetic membranes.展开更多
Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plasti...Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.展开更多
Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have be...Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.展开更多
AIM: To cost-effectively express the 23-ku pE2, the most promising subunit vaccine encoded by the E2 fragment comprising of the 3'-portion of hepatitis E virus (HEV) open reading frame 2 (ORF2) in plastids of to...AIM: To cost-effectively express the 23-ku pE2, the most promising subunit vaccine encoded by the E2 fragment comprising of the 3'-portion of hepatitis E virus (HEV) open reading frame 2 (ORF2) in plastids of tobacco (Nicotiana tabacum cv. SR1), to investigate the transgene expression and pE2 accumulation in plastids, and to evaluate the antigenic effect of the plastid-derived pE2 in mice. METHODS: Plastid-targeting vector pRB94-E2 containing the E2 fragment driven by rice psbA promoter was constructed. Upon delivery into tobacco plastids, this construct could initiate homologous recombination in psaB-trnfM and trnG-psbC fragments in plastid genome, and result in transgene inserted between the two fragments. The pRB94-E2 was delivered with a biolistic particle bombardment method, and the plastid-transformed plants were obtained following the regeneration of the bombarded leaf tissues on a spectinomycin-supplemented medium. Transplastomic status of the regenerated plants was confirmed by PCR and Southern blot analysis, transgene expression was investigated by Northern blot analysis, and accumulation of pE2 was measured by ELISA. Furthermore, protein extracts were used to immunize mice, and the presence of the pE2-reactive antibodies in serum samples of the immunized mice was studied by ELISA. RESULTS: Transplastomic lines confirmed by PCR and Southern blot analysis could actively transcribe the E2 mRNA. The pE2 polypeptide was accumulated to a level as high as 13.27 μg/g fresh leaves. The pE2 could stimulate the immunized mice to generate pE2-specific antibodies. CONCLUSION: HEV-E2 fragment can be inserted into the plastid genome and the recombinant pE2 antigen derived is antigenic in mice. Hence, plastids may be a novel source for cost-effective production of HEV vaccines.展开更多
In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous rec...In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination. To establish an expression system for alien genes in rice chloroplast, the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study. Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique, and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator ofpsbA gene 3 sequence. Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct. Subsequently, the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained. Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome. Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome. Thus, the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome, but PPT-resistant trait for rice plants as well. It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.展开更多
Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, trans...Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, transcription of the 3.4-kb mosquito-larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic C. reinhardtii chloroplasts under control of the promoter and 5’-untranslated region of photosynthetic psbA gene was accomplished. Inverted repeats in chloroplast genomes of the host strain with deleted endogenous psbA genes were selected as recombination targets. Two transformant lines were obtained by dual-phenotypic screening via exhibition of resistance to spectinomycin and restoration of photosynthetic activity. Stable and site-specific integration of intact cry4Ba and psbA genes into chloroplast genomes found in both transgenic lines implied homoplasmy of organelle populations. Achievement in cotranscription of cry4Ba and psbA transgenes revealed by RT-PCR and Northern blot analyses demonstrates the sufficiency of this system’s transcription machinery, offering the further innovation for insecticidal protein production.展开更多
Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal
The plastid(chloroplast)genome of higher plants is an appealing target for metabolic engineering via genetic transformation.Although the bacterial-type plastid genome is small compared with the nuclear genome,it can a...The plastid(chloroplast)genome of higher plants is an appealing target for metabolic engineering via genetic transformation.Although the bacterial-type plastid genome is small compared with the nuclear genome,it can accommodate large quantities of foreign genes that precisely integrate through homologous recombination.Engineering complex metabolic pathways in plants often requires simultaneous and concerted expression of multiple transgenes,the possibility of stacking several transgenes in synthetic operons makes the transplastomic approach amazing.The potential for extraordinarily high-level transgene expression,absence of epigenetic gene silencing and transgene containment due to the exclusion of plastids from pollen transmission in most angiosperm species further add to the attractiveness of plastid transformation technology.This minireview describes recent advances in expanding the toolboxes for plastid genome engineering,and highlights selected high-value metabolites produced using transplastomic plants,including artemisinin,astaxanthin and paclitaxel.展开更多
基金supported by the National Natural Science Foundation of China(39570361).
文摘The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).
文摘Transglutaminases (TGases, EC 2.3.2.13) catalyse posttranslational modification of proteins by establishing ε-(γ-glutamyl) links and covalent conjugation of polyamines. In plants, the functionality of these enzymes is scarcely known. The maize transglutaminase gene (tgz), the only cloned plant TGase, produces major alterations in thylakoid membrane architecture when the transglutaminase (chlTGZ) protein was over-expressed in tobacco chloroplasts, significantly increasing the number of grana stacked layers. Here we demonstrate that nuclear transformation of rice plants starting from a tgz gene truncated in 17 N-terminal aas (tgzt) non altered chloroplast thylakoid structures. F3 transformed plants were analysed for TGase activity, chlTGZ presence and tgzt transcription levels. Transformed plants exhibited double the in vitro TGase activity of the non-transformed plants. Immunoblot and quantitative RT-PCR analysis results of tgzt-rice plants grown under different illumination periods revealed that chlTGZ maintains its differential expression depending on the light regime. Nevertheless, the maize protein was localised by confocal microscopy in the cell wall of transformed rice cells. TEM analyses of the transformed cells showed normal, non-altered chloroplast thylakoid structures with the maize protein preferentially located in the cell walls. The results confirmed that the tgz eliminated sequence is essential for chloroplast targeting, being its absence sufficient to the lack of protein expression in its original plastidal compartment. Interestingly, the immunolocalization of a putative endogenous rice TGase protein is also showed. These data give further information on plant TGase functionality and its relationship to photosynthetic membranes.
文摘Chloroplast genetic engineering, with several advantages over nuclear genetic engineering, is now regarded as an attractive new technology in basic and applied research, including deepening our understanding of plastid genome, engineering plant metabolic system, generating transplastomic plants with higher resistance to insect, disease, drought and herbicide and bioproducing of antibodies and vaccines. In this review, the principle and operating system for chloroplast genetic engineering and its application in higher plants have been discussed.
基金Supported by National Natural Science Foundation of China(31360357)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2013GXNSFAA019051)Earmarked Fund for China Agriculture Research System(CARS-20-1-3)~~
文摘Along with the development of modern molecular biology technologies, complete chloroplast genomes have been sequenced in various plant species to date, and the structure, function and expression of these genes have been deter-mined. The chloroplast genome structure in most higher plants is stable, since the gene number, arrangement and composition are conservative. The determination of sugarcane chloroplast genome sequence laid a good foundation for sugarcane chloroplast related research. This article gives a review on the research progress of sugarcane chloroplast genome through the chloroplast genome map, gene structure, function, chloroplast RNA editing, and phylogenetic analysis in Saccharum and relat-ed genera. This study held great potential to clarify more directions in researches, including sugarcane chloroplast genetic transformation, complete chloroplast nu-cleotide sequence determination in Saccharum and closely related genera, cpSSRs development and application.
基金Supported by a grant from the Hong Kong Research Grant Council, No. 7342/03M to YX Zhou and E Lam
文摘AIM: To cost-effectively express the 23-ku pE2, the most promising subunit vaccine encoded by the E2 fragment comprising of the 3'-portion of hepatitis E virus (HEV) open reading frame 2 (ORF2) in plastids of tobacco (Nicotiana tabacum cv. SR1), to investigate the transgene expression and pE2 accumulation in plastids, and to evaluate the antigenic effect of the plastid-derived pE2 in mice. METHODS: Plastid-targeting vector pRB94-E2 containing the E2 fragment driven by rice psbA promoter was constructed. Upon delivery into tobacco plastids, this construct could initiate homologous recombination in psaB-trnfM and trnG-psbC fragments in plastid genome, and result in transgene inserted between the two fragments. The pRB94-E2 was delivered with a biolistic particle bombardment method, and the plastid-transformed plants were obtained following the regeneration of the bombarded leaf tissues on a spectinomycin-supplemented medium. Transplastomic status of the regenerated plants was confirmed by PCR and Southern blot analysis, transgene expression was investigated by Northern blot analysis, and accumulation of pE2 was measured by ELISA. Furthermore, protein extracts were used to immunize mice, and the presence of the pE2-reactive antibodies in serum samples of the immunized mice was studied by ELISA. RESULTS: Transplastomic lines confirmed by PCR and Southern blot analysis could actively transcribe the E2 mRNA. The pE2 polypeptide was accumulated to a level as high as 13.27 μg/g fresh leaves. The pE2 could stimulate the immunized mice to generate pE2-specific antibodies. CONCLUSION: HEV-E2 fragment can be inserted into the plastid genome and the recombinant pE2 antigen derived is antigenic in mice. Hence, plastids may be a novel source for cost-effective production of HEV vaccines.
基金funded by the 948 Program of the Ministry of Agriculture of China (991020)by the Natural Science Foundation of the Science and Technology Department of Jiangsu Province, China (BK2001139)
文摘In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination. To establish an expression system for alien genes in rice chloroplast, the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study. Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique, and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator ofpsbA gene 3 sequence. Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct. Subsequently, the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained. Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome. Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome. Thus, the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome, but PPT-resistant trait for rice plants as well. It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.
文摘Unicellular micro-alga Chlamydomonas reinhardtii has been recognized as a promising host for expressing recombinant proteins albeit its limited utility due to low levels of heterologous protein expression. Here, transcription of the 3.4-kb mosquito-larvicidal cry4Ba gene from Bacillus thuringiensis in transgenic C. reinhardtii chloroplasts under control of the promoter and 5’-untranslated region of photosynthetic psbA gene was accomplished. Inverted repeats in chloroplast genomes of the host strain with deleted endogenous psbA genes were selected as recombination targets. Two transformant lines were obtained by dual-phenotypic screening via exhibition of resistance to spectinomycin and restoration of photosynthetic activity. Stable and site-specific integration of intact cry4Ba and psbA genes into chloroplast genomes found in both transgenic lines implied homoplasmy of organelle populations. Achievement in cotranscription of cry4Ba and psbA transgenes revealed by RT-PCR and Northern blot analyses demonstrates the sufficiency of this system’s transcription machinery, offering the further innovation for insecticidal protein production.
文摘Chloroplast transformation provides a powerful tool to produce useful proteins in plants. After completion of the chloroplast genome sequencing from tobacco plants (Shinozaki et al., 1986, Yukawa et al., 2005), Pal
基金supported by the National Natural Science Foundation of China(32071477)Key Research and Development Program of Hubei Province(2021BBA224)Innovation Base for Introducing Talents of Discipline of Hubei Province(2019BJH021,2021EJD025).
文摘The plastid(chloroplast)genome of higher plants is an appealing target for metabolic engineering via genetic transformation.Although the bacterial-type plastid genome is small compared with the nuclear genome,it can accommodate large quantities of foreign genes that precisely integrate through homologous recombination.Engineering complex metabolic pathways in plants often requires simultaneous and concerted expression of multiple transgenes,the possibility of stacking several transgenes in synthetic operons makes the transplastomic approach amazing.The potential for extraordinarily high-level transgene expression,absence of epigenetic gene silencing and transgene containment due to the exclusion of plastids from pollen transmission in most angiosperm species further add to the attractiveness of plastid transformation technology.This minireview describes recent advances in expanding the toolboxes for plastid genome engineering,and highlights selected high-value metabolites produced using transplastomic plants,including artemisinin,astaxanthin and paclitaxel.