Codon usage bias(CUB) is a unique property of genome which refers to non-random usage of synonymous codons in coding sequences. The present study makes an attempt to find out the pattern of CUB in chloroplast(cp) gene...Codon usage bias(CUB) is a unique property of genome which refers to non-random usage of synonymous codons in coding sequences. The present study makes an attempt to find out the pattern of CUB in chloroplast(cp) genes among three tea species, i.e., Camellia sinensis var. assamica(Assam tea), Camellia sinensis var. sinensis(Chinese tea) and Camellia pubicosta(wild tea species) as no work on CUB was reported earlier. To understand the patterns of codon usage among the cp genes of three tea groups, we used bioinformatic tools to investigate the protein coding sequences of cp genes. In our present study, the mean nucleobase T was the highest whereas C was the lowest in all the three tea groups. The overall AT content was more than GC content, i.e., genes were AT rich. The scaled chi-square(SCS) value indicated that the CUB of cp genes was low. The codon CGT(Arg) was over-represented in C. sinensis var. sinensis whereas GGA(Pro) was over-represented in C. pubicosta species. Heatmap study revealed that most of the GC ending codons showed positive correlations between codon usage and GC3 while AT ending codons exhibited negative correlations. From neutrality plot analysis, it was evident that natural selection had played a major role, while mutation pressure exerted a minor effect in the CUB of cp genes in three tea groups. Highly significant(P<0.01) positive correlation was found between SCS and synonymous codon usage order(SCUO) of cp genes which suggested that high expression of cp genes was associated with high degree of CUB.展开更多
The induction of genes encoded in the open reading frames (ORFs) of chloroplast genomes have been posited to be influenced by ambient light condition. The current study focused on determining which of the six ORFs, en...The induction of genes encoded in the open reading frames (ORFs) of chloroplast genomes have been posited to be influenced by ambient light condition. The current study focused on determining which of the six ORFs, encoding the genes ycf 1, ycf 2, psbD (photosystem II), rbcl (Rubisco), matK (Maturase K) and rpoC1 (RNA polymerase) were influenced by light. Characterization of gene expression at the whole plant level and callus stage facilitates the identification of transcripts which are differentially regulated under these environmental conditions. Specificity of these primers was tested against genomic DNA and total RNA. Transcripts of six targeted genes were detected in all three replicates of the green and white callus under light and dark conditions, except for ycf 2 gene in green callus under light. The result showed that a partial transcript of the gene ycf 2 located on the J. curcas chloroplast genome was not detectable using reverse transcription PCR. This finding was then validated using quantitative real-time PCR. The gene was suspected to be post-transcriptionally modified. The transcripts of the remaining five ORFs could be detected using quantitative real-time PCR. Specific transcripts can be identified for application as biomarkers for selection of callus for plantlet regeneration.展开更多
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago.During subsequent coevolution with the nuclear genome,the chloroplast genome has remained independent,albeit strongly re...Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago.During subsequent coevolution with the nuclear genome,the chloroplast genome has remained independent,albeit strongly reduced,with its own transcriptional machinery and distinct features,such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing.Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis,minimize photodamage,and prioritize energy investments.Over the past few years,studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms.In this review,we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants.We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research;new techniques for characterizing the molecular mechanisms of chloroplast gene expression;and important aspects of chloroplast gene expression for improving crop yield and stress tolerance.We also discuss biological and mechanistic questions that remain to be answered in the future.展开更多
In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous rec...In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination. To establish an expression system for alien genes in rice chloroplast, the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study. Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique, and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator ofpsbA gene 3 sequence. Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct. Subsequently, the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained. Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome. Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome. Thus, the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome, but PPT-resistant trait for rice plants as well. It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.展开更多
The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong li...The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).展开更多
Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed ...Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.展开更多
Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was exa...Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was examined by adding more taxa and sequences to clarify the congruence between morphology and molecular phylogeny, the systematic placements of four genera in Polygonaceae, as well as the infra-generic relationships of Atraphaxis and Calligonum within Atraphaxideae. Five chloroplast genes, atpB-rbcL, psbA-trnH, trnL-tmF, psbK-psbl, and rbcL of Atraphaxis, Calligonum, Pteropyrum, and Parapteropyrum were sequenced. The non-monophyly of Atraphaxideae was confirmed. Atraphaxis and Calligonum, respectively, formed a monophyletic group that was well supported. Calligonum is closely related to Pteropyrum; Atraphaxis is sister to Polygonum s. str. and Parapteropyrum is allied with Fagopyrum. Although the morphology suggested the four genera should form a tribe, the molecular data indicated Atraphaxideae was not one monophyletic group. The clades identified within Atraphaxis corresponded well with the current sectional classification based on morphological features. As for Cal- ligonum, Medusa was identified as a non-monophyletic section.展开更多
By screening sequence reads from the Salix suchowensis chloroplast (cp) genome that were generated by next-generation sequencing platforms, we assembled a complete circular pseudomolecule for the cp genome. This pse...By screening sequence reads from the Salix suchowensis chloroplast (cp) genome that were generated by next-generation sequencing platforms, we assembled a complete circular pseudomolecule for the cp genome. This pseudomolecule is 155,508 bp long and has a typical quadripartite structure that contains two single copy regions, a large single copy region (LSC, 84,385 bp), and a small single copy region (SSC, 16,209 bp) separated by inverted repeat regions (IRs, 27,457 bp). Gene annotation revealed that the S. suchowensis cp genome encoded 119 unique genes, including four ribosome RNA genes, 30 transfer RNA genes, 82 protein-coding genes, and three pseudogenes. Analysis of the repetitive sequences revealed 31 tandem repeats, 16 forward repeats, and five palindromic repeats. In addition, a total of 148 perfect microsatellites, which were characterized as A/T dominant in nucleotide composition, were detected. Significant shifting of the IR/SSC boundaries was revealed by comparing this cp genome with those of other rosid plants. We also constructed phylogenetic trees to demonstrate the phylogenetic position of S. suchowensis in Rosidae based on 66 orthologous protein-coding genes present in the cp genomes of 32 species. Sequencing 30 amplicons based on the pseudomolecule for experimental verification revealed 99.88% accuracy for the S. suchowensis cp genome assembly. Therefore, we assembled a high-quality pseudomolecule of the S. suchowensis cp genome, which is a useful resource for facilitating development of this shrub willow into a more productive bioenergy crop.展开更多
文摘Codon usage bias(CUB) is a unique property of genome which refers to non-random usage of synonymous codons in coding sequences. The present study makes an attempt to find out the pattern of CUB in chloroplast(cp) genes among three tea species, i.e., Camellia sinensis var. assamica(Assam tea), Camellia sinensis var. sinensis(Chinese tea) and Camellia pubicosta(wild tea species) as no work on CUB was reported earlier. To understand the patterns of codon usage among the cp genes of three tea groups, we used bioinformatic tools to investigate the protein coding sequences of cp genes. In our present study, the mean nucleobase T was the highest whereas C was the lowest in all the three tea groups. The overall AT content was more than GC content, i.e., genes were AT rich. The scaled chi-square(SCS) value indicated that the CUB of cp genes was low. The codon CGT(Arg) was over-represented in C. sinensis var. sinensis whereas GGA(Pro) was over-represented in C. pubicosta species. Heatmap study revealed that most of the GC ending codons showed positive correlations between codon usage and GC3 while AT ending codons exhibited negative correlations. From neutrality plot analysis, it was evident that natural selection had played a major role, while mutation pressure exerted a minor effect in the CUB of cp genes in three tea groups. Highly significant(P<0.01) positive correlation was found between SCS and synonymous codon usage order(SCUO) of cp genes which suggested that high expression of cp genes was associated with high degree of CUB.
文摘The induction of genes encoded in the open reading frames (ORFs) of chloroplast genomes have been posited to be influenced by ambient light condition. The current study focused on determining which of the six ORFs, encoding the genes ycf 1, ycf 2, psbD (photosystem II), rbcl (Rubisco), matK (Maturase K) and rpoC1 (RNA polymerase) were influenced by light. Characterization of gene expression at the whole plant level and callus stage facilitates the identification of transcripts which are differentially regulated under these environmental conditions. Specificity of these primers was tested against genomic DNA and total RNA. Transcripts of six targeted genes were detected in all three replicates of the green and white callus under light and dark conditions, except for ycf 2 gene in green callus under light. The result showed that a partial transcript of the gene ycf 2 located on the J. curcas chloroplast genome was not detectable using reverse transcription PCR. This finding was then validated using quantitative real-time PCR. The gene was suspected to be post-transcriptionally modified. The transcripts of the remaining five ORFs could be detected using quantitative real-time PCR. Specific transcripts can be identified for application as biomarkers for selection of callus for plantlet regeneration.
基金supported by the National Key Research and Development Program of China(grant no.2020YFA0907600)the National Natural Science Foundation of China(grant nos.31730102 and 32000184)+1 种基金the Natural Science Foundation of Shandong Province(grant no.ZR2020QC023)the China Postdoctoral Science Foundation(grant no.2020M672093).
文摘Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago.During subsequent coevolution with the nuclear genome,the chloroplast genome has remained independent,albeit strongly reduced,with its own transcriptional machinery and distinct features,such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing.Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis,minimize photodamage,and prioritize energy investments.Over the past few years,studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms.In this review,we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants.We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research;new techniques for characterizing the molecular mechanisms of chloroplast gene expression;and important aspects of chloroplast gene expression for improving crop yield and stress tolerance.We also discuss biological and mechanistic questions that remain to be answered in the future.
基金funded by the 948 Program of the Ministry of Agriculture of China (991020)by the Natural Science Foundation of the Science and Technology Department of Jiangsu Province, China (BK2001139)
文摘In contrast to the situation of random integration of foreign genes in nuclear transformation, the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination. To establish an expression system for alien genes in rice chloroplast, the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study. Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique, and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator ofpsbA gene 3 sequence. Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct. Subsequently, the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained. Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome. Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome. Thus, the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome, but PPT-resistant trait for rice plants as well. It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.
基金supported by the National Natural Science Foundation of China(39570361).
文摘The Bt Cry IA (C) chloroplast expression cassette and OC chloroplast expression cassette were constructed. The Bt expression cassette contained the 3.5 kb wild type Bt Cry I4(C) gene under the control of the strong light-induced psbA promoter and terminator from rice (Oryza saliva . L) chloroplast, the gene: trnH-psbA-trnk from tobacco (Nicotiana tabacum. L) as the homologous fragment. The OC chloroplast expression cassette contained the OC gene under the control of 16S promoter and terminator from tobacco, the tobacco gene: psbA-ORF512 as homologous fragment. The two cassettes both had the aadA gene expression cassette as the selectable marker. Leaves of tobacco were cotransformed with the particle bombardment method. After selection by spectinomycin, the transformants were obtained. The integration of Bt and OC gene were confirmed by Southern-blotting analysis, and Western-blotting analysis. Proteinase inhibitor assays showed that the Bt and OC gene had expressed. Bioassays showed that the transgenic tobacco had a significant resistance to the larvae of cotton bollworm (helicoverpa zea).
基金This work was supported by the State "863" High-Tech Program (Grant No. 101-04-03-04)the National Natural Science Foundation of China (Grant No. 59673008).
文摘Chloroplast integration and expression vector containing expression cassettes for phbB, phbA, phbC and aadA genes was constructed and bombarded into the tobacco chloroplast genome. Transplastomic plants were analyzed with PCR and Southern blot. Their homoplastomy was also judged. Northern dot and RT-PCR analysis were employed to investigate transgene expression at transcriptional level. The results indicate that the chloroplast transformation system is compatible for poly-3-hydroxybutyrate (PHB) production.
基金supported by Chinese Academy of Sciences Important Direction for Knowledge Innovation Project (KZCX2-EW-305),Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences
文摘Traditionally, Atraphaxis, Calligonum, Pteropyrum and Parapteropyrum are included in the tribe Atraphxideae. Recently, sequence data has revealed that this tribe is not monophyletic. The structure of the tribe was examined by adding more taxa and sequences to clarify the congruence between morphology and molecular phylogeny, the systematic placements of four genera in Polygonaceae, as well as the infra-generic relationships of Atraphaxis and Calligonum within Atraphaxideae. Five chloroplast genes, atpB-rbcL, psbA-trnH, trnL-tmF, psbK-psbl, and rbcL of Atraphaxis, Calligonum, Pteropyrum, and Parapteropyrum were sequenced. The non-monophyly of Atraphaxideae was confirmed. Atraphaxis and Calligonum, respectively, formed a monophyletic group that was well supported. Calligonum is closely related to Pteropyrum; Atraphaxis is sister to Polygonum s. str. and Parapteropyrum is allied with Fagopyrum. Although the morphology suggested the four genera should form a tribe, the molecular data indicated Atraphaxideae was not one monophyletic group. The clades identified within Atraphaxis corresponded well with the current sectional classification based on morphological features. As for Cal- ligonum, Medusa was identified as a non-monophyletic section.
基金supported by the Key Forestry Public Welfare Project(201304102)the Natural Science Foundation of China(31400564 and 315005533)+1 种基金enabled by the Innovative Research Team of the Educational Department of Chinathe PAPD(Priority Academic Program Development)program at Nanjing Forestry University
文摘By screening sequence reads from the Salix suchowensis chloroplast (cp) genome that were generated by next-generation sequencing platforms, we assembled a complete circular pseudomolecule for the cp genome. This pseudomolecule is 155,508 bp long and has a typical quadripartite structure that contains two single copy regions, a large single copy region (LSC, 84,385 bp), and a small single copy region (SSC, 16,209 bp) separated by inverted repeat regions (IRs, 27,457 bp). Gene annotation revealed that the S. suchowensis cp genome encoded 119 unique genes, including four ribosome RNA genes, 30 transfer RNA genes, 82 protein-coding genes, and three pseudogenes. Analysis of the repetitive sequences revealed 31 tandem repeats, 16 forward repeats, and five palindromic repeats. In addition, a total of 148 perfect microsatellites, which were characterized as A/T dominant in nucleotide composition, were detected. Significant shifting of the IR/SSC boundaries was revealed by comparing this cp genome with those of other rosid plants. We also constructed phylogenetic trees to demonstrate the phylogenetic position of S. suchowensis in Rosidae based on 66 orthologous protein-coding genes present in the cp genomes of 32 species. Sequencing 30 amplicons based on the pseudomolecule for experimental verification revealed 99.88% accuracy for the S. suchowensis cp genome assembly. Therefore, we assembled a high-quality pseudomolecule of the S. suchowensis cp genome, which is a useful resource for facilitating development of this shrub willow into a more productive bioenergy crop.
基金This work was supported by Program for New Century Excellent Talents in University (No. NCET-04-0907) and Program for In-novative Research Team in University (No.IRT0453).