Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrate...Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.展开更多
Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-i...Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-induced veins and pockets show various microtextures, decomposition and phase transformation of minerals. The confirmed high-pressure polymorphs of silicates are ringwoodite, majorite, pyroxene glass and maskelynite. Based on the shock effects and assemblages of high-pressure minerals, shock stages of all of 93 GRV ehondrites were classified. In comparison with literature, the Grove Mountains meteorites have a higher fraction (23 out of 93 ) of heavily shocked samples (S4--S5). Most of the heavily shocked meteorites are L group (22 out of 23), except for one H chondrite. The distinct shock metamorphism between H and. L groups may indicate different surface properties of their parent bodies. In addition, there is relationship between petrologic types and shock stages, with most heavily shocked samples observed in equilibrated ordinary chondrites ( especially Type 5 and 6).展开更多
Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites a...Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites are unequilibrated, as indicated by well shaped chondrules and the chemical variations of olivine and low-Ca pyroxene. The modal abundance ratio of matrix/chondrule are 2 ( GRV 020017), 2. 8 ( GRV 020025 ), l. 2 ( GRV 021579 ), 1 ( GRV 022459 ). GRV 022459 has the largest chondrules (0.6--2.0 ram). A total of 30 Ca-Al-rich inclu- sions were found in the four meteorites. Most inclusions were highly altered, with a- bundant phyllosilicates in the inclusions of GRV 020017 and GRV 020025. On the base of petrography and mineral chemistry, these chondrites are classified as CM2 (GRV 020017 and 020025), CO3 (GRV 021579) and CV3 (GRV 022459).展开更多
Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discu...Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.展开更多
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-ri...Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.展开更多
Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4...Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.展开更多
Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essent...Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.展开更多
The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or...The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or phyllosilicate spherules from the Al Rais (CR) and Orgueil (CI) chondrites. The spherules from Al Rais show large deuterium excesses (δD = +200 -+800‰) relative to terrestrial standards, whereas deuterium-enrichments in the spherules from Orgueil are much smaller (δD = +40 - +130‰). The phyllosilicate spherules are products of aqueous alteration of glassy precursors. In Al Rais the phyllosilicate spherules have relatively higher δD values than the glassy ones, indicating that water introduced during aqueous alteration was deuterium-enriched. The deuterium-enrichments in the phyllosilicate spherules from Orgueil could result from isotopic exchange under thermodynamic conditions within the solar nebula. The much larger δD excesses of the Al Rais spherules, however, cannot be attributed to the similar process; instead, an interstellar origin needs to be invoked.展开更多
We conducted a systematic study of oxide minerals in LL3.0-6 chondrites, and found ilmenite, rutile, perovskite and an unknown Al-Ti-Zr-oxide. Ilmenite is low in abundance, but is present in the chondrules and matrix ...We conducted a systematic study of oxide minerals in LL3.0-6 chondrites, and found ilmenite, rutile, perovskite and an unknown Al-Ti-Zr-oxide. Ilmenite is low in abundance, but is present in the chondrules and matrix of all the samples that we studied. The MnO content of ilmenite in LL3.0-3.3 is lower than that in LL3.5-6. The low concentration of MnO in the former is due to crystallization from chondrules melts at high temperatures. On the other hand, ilmenite composition in LL3.5-6 reflects thermal metamorphism. Therefore, ilmenite is indicative of petrologic type. We also made the first measurements of the 53Mn-53Cr systematics of ilmenite in ordinary chondrites. The age for ilmenite in Y790256 (LL6) is determined to be about 2 Ma older than angrites. This may represent the metamorphic age of the LL chondrites.展开更多
The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sul...The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sulfide, is observed through optical microscope. The textures and assemblages of shock veins in these H-chondrites are examined by the scanning electron microscope. Based on observations of the above shock effects, the shock stages of the 47 H-chondrites are classified into S1(5), S2(19),S$3(14), S4(8) and S5(1). Of these H-chondrites, GRV 022469 has the highest(S5) shock stage. The comparison of shock stages in these H-chondrites with L group chondrites(L-chondrites) indicates that the shock metamorphism of H-chondrites is relatively low (except for GRV 022469, they are all lower than $5). A scenario for the history of the H-chondrite parent body is proposed that suggests the duration of the shock events in the H-chondrite parent bodies was much shorter than those in L-chondrite parent bodies. Also, the pressure may have been released more quickly, and consequently, the high-pressure phases should be easily preserved. However, the parent bodies of the H-chondrites may have been exposed to high temperatures for a longer time after the shock event, so the high-pressure phases formed by solid transformation might have retro-metamorphosed to low-pressure ones; its peak pressure is estimated to be less than 15 GPa. Wadsleyite was found in a shock vein in GRV022469, as confirmed by the Raman spectrometer. Petrological and mineralogical characteristics support the idea that the wadsleyite was formed by solid-state transformation.展开更多
Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and tae...Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.展开更多
Concentrations of noble gases of two Antarctic meteorites (GRV 98002, 98004) from Chinese collections, and the Guangmingshan and Zhuanghe chondrites were measured. Based on the petrography and mineralogy of these mete...Concentrations of noble gases of two Antarctic meteorites (GRV 98002, 98004) from Chinese collections, and the Guangmingshan and Zhuanghe chondrites were measured. Based on the petrography and mineralogy of these meteorites, and production rates of the cosmogenic nuclides, we calculated cosmic-ray exposure and gas retention ages of the four chondrites. Exposure ages of the four chondrites are 0.052 Ma 0.008 Ma (GRV 98004, H5), 17.0 Ma 2.5 Ma (GRV98002, L5), 3.8 Ma 0.6 Ma (Zhuanghe, H5), and 68.9 Ma 10 Ma (Guangmingshan, H5), respectively. The exposure age of GRV 98004 is the lowest value of Antarctic meteorites reported up to date; while that of Guangmingshan is higher than other Chinese meteorites of H-group. Both GRV 98002 and Zhuanghe have low 4He concentrations, probably due to shock effects or solar heating at orbits with small perihelion distances during cosmic-ray exposure. On the other hand, losses of cosmogenic 3He and 4He are correlated with both GRV 98002 and Guangmingshan.展开更多
Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrog...Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrogenetic relationships. In this work, seven ARCs were found in three ordinary chondrites GRV 022410 (H4), GRV 052722 (H3.7) and Julesburg (L3.6). They contain bulk Al2O3 - 17%-33% and exhibit igneous textures composed of olivine, high- and low-Ca pyroxene, plagioclase, spinel and glass. In situ SIMS analyses show that ARCs have oxygen isotopic compositions (δ18O=-6.1‰-7.1‰; δ17O= -4.5‰-5.1‰) close to ferromagnesian chondrules but far more depleted in 160 than CAIs (δ18O=-40‰; δ17O=-40‰). Most ARCs plot close to the terrestrial mass fractionation (TF) line, and a few between the TF and carbonaceous chondrite anhydrous mixing (CCAM) lines. Plagioclase, nepheline and glass suffered O-isotopic exchanges during the metamorphism processes in the parent body. Spinel, olivine and pyroxene represent the primary O-isotopic compositions of ARCs, and define a fitted line with a slope of- 0.7±0.1. Compared with the results of previous studies, shallower slope as well as more depleted 160 compositions further demonstrates that ARCs in ordinary chondrites are not a simple mixing product of ferromagnesian chondrules and CAIs. Instead, they probably experienced higher-degree oxygen isotope exchange with a δ6O-poor nebular gas reservoir during multiple melting episodes.展开更多
The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked ...The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked H- and L-chondrites. Samples of the Jilin chondrite (H5) were experimentally shock-loaded at the following peak pressures: 12, 27, 39, 53, 78, 83, 93 and 133 GPa respectively. Chondritic melts were first obtained at P>78 GPa and more than 60% melting was achieved at P^133 GPa. No high-pressure phases were observed in any of the shocked samples, neither in the deformed nor in the molten regions. Textural relations and mineral assemblages of the shocked samples are comparable to those encountered in the heavily shocked H-chondrite Yanzhuang but differ considerably from those found in heavily shocked L6 chondrites. Shock melt veins in L6 chondrites contain high-pressure polymorphs of olivine and pyroxene and high pressure liquidus phases. Scaling from shock experiments on millimeter-sized samples to natural shock features on kilometer-sized asteroids poses considerable problems in quantifying the P-T conditions during natural shock events on asteroids.展开更多
The occurrence of γ phase, a high\|pressure polymorph of olivine (α phase), in the shock veins of Si\| xiangkou chondrite was due to a greater cooling rate (>10 000℃·s -1 ) in the veins. Because γ phas...The occurrence of γ phase, a high\|pressure polymorph of olivine (α phase), in the shock veins of Si\| xiangkou chondrite was due to a greater cooling rate (>10 000℃·s -1 ) in the veins. Because γ phase partially reverted to β phase and no back\|transformation from β phase to α phase took place, the shock veins of Peace River chondrite with a cooling rate of 1 000\2 000℃·s -1 contain a great amount of β phase. In the shock veins of Mbale chondrite with a cooling rate of <500℃·s -1 , the majority of γ phase reverted to α phase. The heat dissipation in shock veins took place after a stage of shock compression of chondrite parent body, and the parent body was broken into fragmental pieces. Cooling rate in the shock veins constrained the back\|transformations of (Mg,Fe)\-2SiO\-4 high\|pressure polymorphs.展开更多
基金financially supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000)the National Science Foundation of China (41173077, 41776196, 41630206, and 41325011)+1 种基金the National Science and Technology Foundation Platform Project of Ministry of Science and Technology of China (2005DKA21406)the 111 Project
文摘Stable isotopic data of meteorites are critical for understanding the evolution of terrestrial planets. In this study, we report high-precision vanadium (V) isotopic compositions of 11 unequilibrated and equilibrated L chondrites. Our samples show an average δ^51v of -1.25‰ ±0.38‰ (2SD, n = 11), which is ,- 0.5‰ lighter than that of the bulk silicate Earth constrained by mantle peridotites. Isotopic fractionation in type 3 ordinary chondrites vary from - 1.76‰ to - 1.29‰, whereas the δ^51V of equilibrated chondrites vary from - 1.37‰ to -1.08‰. 551V of L chondrites do not correlate with thermal metamorphism, shock stage, or weathering degree. Future studies are required to explore the reason for V isotope variation in the solar system.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(kzcx2-yw-110,KZCX2-YW-Q08)
文摘Shock effects of 93 Grove Mountains (GRV) ordinary chondrites were studied in this work, including fracture, various types of extinction, and recrystallization of silicates observed under optical microscopy. Shock-induced veins and pockets show various microtextures, decomposition and phase transformation of minerals. The confirmed high-pressure polymorphs of silicates are ringwoodite, majorite, pyroxene glass and maskelynite. Based on the shock effects and assemblages of high-pressure minerals, shock stages of all of 93 GRV ehondrites were classified. In comparison with literature, the Grove Mountains meteorites have a higher fraction (23 out of 93 ) of heavily shocked samples (S4--S5). Most of the heavily shocked meteorites are L group (22 out of 23), except for one H chondrite. The distinct shock metamorphism between H and. L groups may indicate different surface properties of their parent bodies. In addition, there is relationship between petrologic types and shock stages, with most heavily shocked samples observed in equilibrated ordinary chondrites ( especially Type 5 and 6).
基金supported by the Doctor's Foundation of Hunan University of Science and Technology(Grant No.E50806)
文摘Petrography and mineral chemistry of four carbonaceous chondrites ( GRV 020017, GRV 020025, GRV 021579, GRV 022459 ) collected from the Grove Mountains ( GRV), Antarctica, were reported here. All four chondrites are unequilibrated, as indicated by well shaped chondrules and the chemical variations of olivine and low-Ca pyroxene. The modal abundance ratio of matrix/chondrule are 2 ( GRV 020017), 2. 8 ( GRV 020025 ), l. 2 ( GRV 021579 ), 1 ( GRV 022459 ). GRV 022459 has the largest chondrules (0.6--2.0 ram). A total of 30 Ca-Al-rich inclu- sions were found in the four meteorites. Most inclusions were highly altered, with a- bundant phyllosilicates in the inclusions of GRV 020017 and GRV 020025. On the base of petrography and mineral chemistry, these chondrites are classified as CM2 (GRV 020017 and 020025), CO3 (GRV 021579) and CV3 (GRV 022459).
基金supported by the Doctor's Foundation of Hunan University of Science and Technology(Grant No.E50806)
文摘Petrography and mineral chemistry of ninety-eight ordinary chondrites from Grove Mountains (GRV), Antarctica, were presented and their. Weathering effect, shock metamorphism and type distribution patterns were discussed in this study. Among them, six are unequilibrated ordinary chondrites, including 3 H3 and 3 L3 ; and 92 meteorites are equilibrated ordinary chondrites, including 24 H-group ( 13 H4, 10 H5, 1 H6), 64 L-group (2 L4, 44 L5, 18 L6) and 4 LL-group (3 LL4, 1 LL5). Most GRV ehondrites ( 〉 90% ) displayed minor weathering effect ( W1 and W2). About half of the meteorites experienced severe shock metamorphism. They commonly contain shock-induced melt veins and pockets. These heavily shocked meteorites provide us with natural samples for study of high-pressure polymorphs of minerals. In addition, the Grove Mountains collection seems to have more abundant unequilibrated and L group ordinary ehondrites compared to the US Antarctic meteorite collection which were mainly found along the Transantarctic Mountains.
基金This work was supported by the pilot project of knowledge-innovation of Chinese Academy of Sciences(Grant No:KZCX3-SW-123)the National Natural Science Foundation of China(Grant No.40025311).
文摘Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and 021579, all the inclusions can be classified as Type A-like or spinel-pyroxene-rich inclusions, and they probably represent the continuum of solar nebular condensation. In addition, most of the inclusions in these meteorites share much similarity in both petrography and mineral chemistry, suggesting a similar origin of Ca-Al-rich inclusions in various chondrites.
文摘Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other regions in Antarctica. Many of these meteorites show significant terrestrial weathering, probably due to a high abundance ratio of meteorites found in moraines to those on blue ice. Nine meteorites experienced severe shock metamorphism, as evidenced by undulose extinction and intense fracturing of silicates and presence of shock-induced melt veins and pockets. These heavily shocked meteorites provided us with natural samples for the study of high-pressure polymorphs of minerals.
基金funded by Strategic Priority Research Program of Chinese Academy of Sciences(XDB 41000000)Project funded by China Postdoctoral Science Foundation(2020M673557XB)+4 种基金Guangxi Natural Science Foundation under Grant No.2020JJB150056Civil Aerospace Pre Research Project(D020302 and D020206)Guangxi Scientific Base and Talent Special Projects(No.AD1850007)Foundation of Guilin University of Technology(GUTQDJJ2019165)the grant from Key Laboratory of Lunar and Deep Space Exploration,CAS(LDSE201907).
文摘Analysis of the thermal metamorphism of the ordinary chondrites is a key premise for gaining insights into the accretion and heating of rocky bodies in the early solar system.Such an analysis also represents an essential condition for constraining the early thermal and evolutionary histories of asteroids and terrestrial planets.Classifying ordinary chondrites into petrologic type(type 3–6)is the criterion for studying the thermal metamorphism of their parent bodies.However,the boundary between the unequilibrated(type 3)and equilibrated(type 4–6)chondrites is ambiguous at present,thus,limiting the understanding of their thermal metamorphism.In this study,the petrology,mineralogy and chemical composition of a set of seven ordinary chondrites with different degrees of thermal metamorphism collected from Grove Mountains(Antarctica)have been studied.The results demonstrated that these chondrite samples were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6 type meteorites,with optimal correlations of Si,Mg,Fe,Mn and Ca with equilibrium degree of the olivine and low-calcium pyroxene and petrologic type.In this respect,the multi-parameter classification standard PMD(SiO2)-PMD(MgO)-PMD(MnO)-PMD(CaO)based on the percent mean deviation(PMD)of the chemical compositions of the olivine and low-calcium pyroxene was proposed to distinguish between the unequilibrated and equilibrated meteorites.The proposed standard exhibited high“resolution”in terms of classification,thus,also deepening the understanding of the effect of the silicate mineral composition in the thermal metamorphism of chondrites.Highlights The chemical groups and petrologic types of the selected seven Antarctic chondrites were L3.7,L3.8,L3.9,L3.9/4,L4,L5 and L6.A new method for petrologic type classification is proposed to distinguish the unequilibrated and equilibrated chondrites.The above developed multi-parameter system exhibited high“resolution”in terms of classification.
文摘The hydroxyl in phyllosilicate minerals is the most common occurrence of water in primitive meteorites. Direct hydrogen isotopic analysis of this water component using an ion microprobe has been made in some glassy or phyllosilicate spherules from the Al Rais (CR) and Orgueil (CI) chondrites. The spherules from Al Rais show large deuterium excesses (δD = +200 -+800‰) relative to terrestrial standards, whereas deuterium-enrichments in the spherules from Orgueil are much smaller (δD = +40 - +130‰). The phyllosilicate spherules are products of aqueous alteration of glassy precursors. In Al Rais the phyllosilicate spherules have relatively higher δD values than the glassy ones, indicating that water introduced during aqueous alteration was deuterium-enriched. The deuterium-enrichments in the phyllosilicate spherules from Orgueil could result from isotopic exchange under thermodynamic conditions within the solar nebula. The much larger δD excesses of the Al Rais spherules, however, cannot be attributed to the similar process; instead, an interstellar origin needs to be invoked.
文摘We conducted a systematic study of oxide minerals in LL3.0-6 chondrites, and found ilmenite, rutile, perovskite and an unknown Al-Ti-Zr-oxide. Ilmenite is low in abundance, but is present in the chondrules and matrix of all the samples that we studied. The MnO content of ilmenite in LL3.0-3.3 is lower than that in LL3.5-6. The low concentration of MnO in the former is due to crystallization from chondrules melts at high temperatures. On the other hand, ilmenite composition in LL3.5-6 reflects thermal metamorphism. Therefore, ilmenite is indicative of petrologic type. We also made the first measurements of the 53Mn-53Cr systematics of ilmenite in ordinary chondrites. The age for ilmenite in Y790256 (LL6) is determined to be about 2 Ma older than angrites. This may represent the metamorphic age of the LL chondrites.
基金supported by the Pilot Project of Knowledge Innovation of Chinese Academy of Sciences (Grant no.KZCX2-YW-110)the National Natural Science Foundation of China(Grant nos. 40673055 and 40473037)the Open Foundation of Key Laboratory of Geological Engineering Centre of Guangxi Province (Grantno. Gui Ke Neng 07109011-K024)
文摘The shock metamorphism of 47 H group chondrites (H-chondrites) from the Grove Mountains including undulatory extinction, planar fractures, mosaic extinction, shock veins and pockets, and dendritic eutectic metal-sulfide, is observed through optical microscope. The textures and assemblages of shock veins in these H-chondrites are examined by the scanning electron microscope. Based on observations of the above shock effects, the shock stages of the 47 H-chondrites are classified into S1(5), S2(19),S$3(14), S4(8) and S5(1). Of these H-chondrites, GRV 022469 has the highest(S5) shock stage. The comparison of shock stages in these H-chondrites with L group chondrites(L-chondrites) indicates that the shock metamorphism of H-chondrites is relatively low (except for GRV 022469, they are all lower than $5). A scenario for the history of the H-chondrite parent body is proposed that suggests the duration of the shock events in the H-chondrite parent bodies was much shorter than those in L-chondrite parent bodies. Also, the pressure may have been released more quickly, and consequently, the high-pressure phases should be easily preserved. However, the parent bodies of the H-chondrites may have been exposed to high temperatures for a longer time after the shock event, so the high-pressure phases formed by solid transformation might have retro-metamorphosed to low-pressure ones; its peak pressure is estimated to be less than 15 GPa. Wadsleyite was found in a shock vein in GRV022469, as confirmed by the Raman spectrometer. Petrological and mineralogical characteristics support the idea that the wadsleyite was formed by solid-state transformation.
基金supported by Science and Technology Planning Project of Guangdong Province,2023B1212060048.
文摘Copper possesses very strong chacophile properties,but under the conditions found in meteorites,its behavior is like that of siderophile elements.The Suizhou meteorite is a highly shocked L6 chondrite.Troilite and taenite are considered the main primary carrier of copper in this meteorite,and the post-shock thermal episode is considered the main reason that elemental Cu migrates from its original host phase and forms metallic grains.The Suizhou meteorite contains a few very thin shock melt veins.The occurrence and behavior of metallic copper in this meteorite were studied by optical microscopic examination,electron microprobe analyses,and high-resolution X-ray elemental intensity mapping.Our results show that metallic copper is abundant in the Suizhou chondritic rock.Metallic copper grains adjacent to small troilite grains inside FeNi metal are the most common occurrence,and those at the FeNi metal–troilite interface are the second most common case.The metallic copper grains occurring at the interface of FeNi metal/troililte and silicate are rather rare.Metallic copper grains are not observed within the Suizhou shock veins,Instead,Cu in elemental form is transferred through shock metamorphism into FeNi metal+troilite intergrowths.Four diff erent occurrence types of Cu in the FeNi metal+troilite intergrowths have been identifi ed:the concentrations of Cu in the FeNi+FeS intergrowths for four occurrence types are rather close,we estimate it might be lower than 1 wt%.
基金the National Science Fund for Distinguished Young Scholar(Grant No.40025311) Pilot Project of Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KZCX2-303-4).
文摘Concentrations of noble gases of two Antarctic meteorites (GRV 98002, 98004) from Chinese collections, and the Guangmingshan and Zhuanghe chondrites were measured. Based on the petrography and mineralogy of these meteorites, and production rates of the cosmogenic nuclides, we calculated cosmic-ray exposure and gas retention ages of the four chondrites. Exposure ages of the four chondrites are 0.052 Ma 0.008 Ma (GRV 98004, H5), 17.0 Ma 2.5 Ma (GRV98002, L5), 3.8 Ma 0.6 Ma (Zhuanghe, H5), and 68.9 Ma 10 Ma (Guangmingshan, H5), respectively. The exposure age of GRV 98004 is the lowest value of Antarctic meteorites reported up to date; while that of Guangmingshan is higher than other Chinese meteorites of H-group. Both GRV 98002 and Zhuanghe have low 4He concentrations, probably due to shock effects or solar heating at orbits with small perihelion distances during cosmic-ray exposure. On the other hand, losses of cosmogenic 3He and 4He are correlated with both GRV 98002 and Guangmingshan.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20131040)the National Natural Science Foundation of China(Grants Nos.41403056,41173076,41273079,41003026)the Minor Planet Foundation of China
文摘Aluminum-rich chondrules (ARCs), which share mineralogic and chemical properties with both Ca, Al-rich inclusions (CAIs) and ferromagnesian chondrules, play an important role in revealing their temporal and petrogenetic relationships. In this work, seven ARCs were found in three ordinary chondrites GRV 022410 (H4), GRV 052722 (H3.7) and Julesburg (L3.6). They contain bulk Al2O3 - 17%-33% and exhibit igneous textures composed of olivine, high- and low-Ca pyroxene, plagioclase, spinel and glass. In situ SIMS analyses show that ARCs have oxygen isotopic compositions (δ18O=-6.1‰-7.1‰; δ17O= -4.5‰-5.1‰) close to ferromagnesian chondrules but far more depleted in 160 than CAIs (δ18O=-40‰; δ17O=-40‰). Most ARCs plot close to the terrestrial mass fractionation (TF) line, and a few between the TF and carbonaceous chondrite anhydrous mixing (CCAM) lines. Plagioclase, nepheline and glass suffered O-isotopic exchanges during the metamorphism processes in the parent body. Spinel, olivine and pyroxene represent the primary O-isotopic compositions of ARCs, and define a fitted line with a slope of- 0.7±0.1. Compared with the results of previous studies, shallower slope as well as more depleted 160 compositions further demonstrates that ARCs in ordinary chondrites are not a simple mixing product of ferromagnesian chondrules and CAIs. Instead, they probably experienced higher-degree oxygen isotope exchange with a δ6O-poor nebular gas reservoir during multiple melting episodes.
文摘The aim of this study is to compare the experimentally shock-induced features with those in naturally shocked chondrites and to test the feasibility of experimentally calibrating naturally induced features in shocked H- and L-chondrites. Samples of the Jilin chondrite (H5) were experimentally shock-loaded at the following peak pressures: 12, 27, 39, 53, 78, 83, 93 and 133 GPa respectively. Chondritic melts were first obtained at P>78 GPa and more than 60% melting was achieved at P^133 GPa. No high-pressure phases were observed in any of the shocked samples, neither in the deformed nor in the molten regions. Textural relations and mineral assemblages of the shocked samples are comparable to those encountered in the heavily shocked H-chondrite Yanzhuang but differ considerably from those found in heavily shocked L6 chondrites. Shock melt veins in L6 chondrites contain high-pressure polymorphs of olivine and pyroxene and high pressure liquidus phases. Scaling from shock experiments on millimeter-sized samples to natural shock features on kilometer-sized asteroids poses considerable problems in quantifying the P-T conditions during natural shock events on asteroids.
文摘The occurrence of γ phase, a high\|pressure polymorph of olivine (α phase), in the shock veins of Si\| xiangkou chondrite was due to a greater cooling rate (>10 000℃·s -1 ) in the veins. Because γ phase partially reverted to β phase and no back\|transformation from β phase to α phase took place, the shock veins of Peace River chondrite with a cooling rate of 1 000\2 000℃·s -1 contain a great amount of β phase. In the shock veins of Mbale chondrite with a cooling rate of <500℃·s -1 , the majority of γ phase reverted to α phase. The heat dissipation in shock veins took place after a stage of shock compression of chondrite parent body, and the parent body was broken into fragmental pieces. Cooling rate in the shock veins constrained the back\|transformations of (Mg,Fe)\-2SiO\-4 high\|pressure polymorphs.