期刊文献+
共找到135篇文章
< 1 2 7 >
每页显示 20 50 100
Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells:matrix vs.induction media 被引量:3
1
作者 Jing He Jianglong Guo +3 位作者 Bo Jiang Ruijuan Yao Yao Wu Fang Wu 《Regenerative Biomaterials》 SCIE 2017年第5期269-279,共11页
While both induction culture media and matrix have been reported to regulate the stem cell fate,little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the... While both induction culture media and matrix have been reported to regulate the stem cell fate,little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms.To this aim,we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes,which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages,respectively,and cultured them with osteogenic,chondrogenic and normal culture media,respectively.A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion,cytoskeleton organization,proliferation,and in particular differentiation into the osteoblastic and chondrocytic lineages.The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did.The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study,where canonical Wnt-b-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation.Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations,but also have important implications in biomaterial design for tissue engineering applications. 展开更多
关键词 osteoblastic differentiation chondrocytic differentiation induction media MATRIX
原文传递
AAV-mediated expression of p65shRNA and bone morphogenetic protein 4 synergistically enhances chondrocyte regeneration
2
作者 Yu Yangyi Song Zhuoyue +2 位作者 Lian Qiang Ding Kang Li Guangheng 《中国组织工程研究》 CAS 北大核心 2025年第17期3537-3547,共11页
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma... BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair. 展开更多
关键词 OSTEOARTHRITIS adeno-associated virus bone morphogenetic protein 4 p65-short hairpin RNA gene therapy short hairpin RNA transforming growth factor-β1 extracellular matrix articular cartilage chondrocytes.
下载PDF
Matrix stiffening promotes chondrocyte senescence and the osteoarthritis development through downregulating HDAC3
3
作者 Bowen Fu Jianlin Shen +6 位作者 Xuenong Zou Nian Sun Ze Zhang Zengping Liu Canjun Zeng Huan Liu Wenhua Huang 《Bone Research》 SCIE CAS CSCD 2024年第2期438-452,共15页
Extracellular matrix(ECM)stiffening is a typical characteristic of cartilage aging,which is a quintessential feature of knee osteoarthritis(KOA).However,little is known about how ECM stiffening affects chondrocytes an... Extracellular matrix(ECM)stiffening is a typical characteristic of cartilage aging,which is a quintessential feature of knee osteoarthritis(KOA).However,little is known about how ECM stiffening affects chondrocytes and other molecules downstream.This study mimicked the physiological and pathological stiffness of human cartilage using polydimethylsiloxane(PDMS)substrates.It demonstrated that epigenetic Parkin regulation by histone deacetylase 3(HDAC3)represents a new mechanosensitive mechanism by which the stiffness matrix affected chondrocyte physiology.We found that ECM stiffening accelerated cultured chondrocyte senescence in vitro,while the stiffness ECM downregulated HDAC3,prompting Parkin acetylation to activate excessive mitophagy and accelerating chondrocyte senescence and osteoarthritis(OA)in mice.Contrarily,intra-articular injection with an HDAC3-expressing adeno-associated virus restored the young phenotype of the aged chondrocytes stimulated by ECM stiffening and alleviated OA in mice.The findings indicated that changes in the mechanical ECM properties initiated pathogenic mechanotransduction signals,promoted the Parkin acetylation and hyperactivated mitophagy,and damaged chondrocyte health.These results may provide new insights into chondrocyte regulation by the mechanical properties of ECM,suggesting that the modification of the physical ECM properties may be a potential OA treatment strategy. 展开更多
关键词 CHONDROCYTE OSTEOARTHRITIS stiffness
下载PDF
Mechanism of acupoint penetration acupuncture therapy regulating chondrocyte autophagy via the PI3K/Akt-mTOR pathway in KOA rats
4
作者 Yang Gao Qingbo Wang +6 位作者 Songwei Li Xiaojing Shi Shan Dai Jingjing Yu Qingpan Zhao Yang Wang Youlong Zhou 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期363-375,共13页
Objective:To investigate whether acupoint penetration acupuncture(APA)could regulate chondrocyte autophagy and apoptosis via the PI3K/Akt-mTOR signaling pathway to reduce cartilage degeneration in knee osteoarthritis(... Objective:To investigate whether acupoint penetration acupuncture(APA)could regulate chondrocyte autophagy and apoptosis via the PI3K/Akt-mTOR signaling pathway to reduce cartilage degeneration in knee osteoarthritis(KOA)rats.Methods: KOA was induced in rats via intra-articular injection of sodium iodoacetate resolution.Forty male Sprague-Dawley rats were randomly assigned to blank control,model,APA,electro-acupuncture(EA),and sham model groups(n=8)and those in the APA and EA groups received their respective therapies.Following completion of the treatment course,histological examinations of cartilage and muscle were conducted.Levels of apoptosis-and autophagy-related factors,including Bax,Bcl-2,mTOR,ULK-1,and Beclin-1 protein,and mRNAs were assessed.Additionally,β-endorphin(β-EP)concentrations in the brain and serum were measured.Results: Histological analysis revealed that APA alleviated cartilage and muscle damage compared with the model group.APA inhibited cartilage degeneration by modulating the expression of apoptosis-and autophagy-related proteins and mRNA,thus preventing chondrocyte apoptosis.In the APA group,Bax and mTOR protein levels were significantly lower than those in the model group(both P=.024).Conversely,the Bcl-2 expression level was significantly higher than that in the EA group(P=.035).Additionally,ULK-1 expression was significantly lower than that in the EA group(P=.045).The mRNA level of Bax was significantly higher than that in the blank control group(P<.001).However,Beclin-1 levels were significantly higher than those in both the model and EA groups(both P<.001).ELISA results showed a significant decrease in the concentration ofβ-EP in the brains of the rats in the APA group compared with those in the model group(P=.032).Conclusions: APA reduced osteoarthritis-related pain and alleviated cartilage damage by upregulating chondrocyte autophagy and down-regulating apoptosis via signaling pathways involving PI3K/Akt-mTOR in KOA rats. 展开更多
关键词 Acupoint penetration acupuncture Knee osteoarthritis CHONDROCYTE AUTOPHAGY Apoptosis Cell proliferation
下载PDF
Exploring the effect of Bushen Bitong recipe-containing serum on IL-1β-induced chondrocyte apoptosis based on SOX9/NF-κB/MMP-13 signaling pathway
5
作者 YI Lin ZHANG Wen-hao +4 位作者 XIANG Wen-yuan SHI Zheng-yu REMILA Aimai-ti DENG Ying-jie FANG Rui 《Journal of Hainan Medical University》 CAS 2024年第4期1-7,共7页
Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control... Objective:To observe the effect and possible mechanism of action of Bushen Bitong recipe(BSBT)containing serum on IL-1β-induced chondrocyte apoptosis.Methods:Generation 3 rat chondrocytes were randomized into Control,IL-1β,IL-1β+BSBT(L),IL-1β+BSBT(M),and IL-1β+BSBT(H)groups(5%,10%and 15%BSBT-containing serum),and then 24h after intervention respectively,the cell proliferation and Apoptosis rate;Western blot detected the expression levels of Bcl-2,BAX,Caspase-3,SOX9,NF-κB p65,MMP-13 proteins in chondrocytes.ELISA detected the levels of TNF-α,IL-6,and bFGF in the supernatants of chondrocyte culture.Results:Compared with Control group,cell proliferation activity decreased,apoptosis rate increased,NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level increased,and SOX9 protein level and bFGF level decreased in IL-1βgroup;compared with IL-1βgroup,different concentrations of BSBT-containing serum group,cell proliferation activity increased,and apoptosis rate decreased.NF-κB p65,MMP-13 protein level and TNF-α,IL-6 level decreased,SOX9 protein level and bFGF level increased;compared with IL-1β+BSBT(L)group,cell proliferation activity increased,apoptosis rate decreased in IL-1β+BSBT(M)and IL-1β+BSBT(H)groups,and NF-κB p65,MMP-13 protein level and TNF-αlevel decreased.13 protein levels and TNF-αand IL-6 levels decreased,and SOX9 protein levels and bFGF levels increased.Conclusion:BSBT-containing serum may promote IL-1β-induced proliferation of chondrocytes,reduce apoptosis,improve the microenvironment of chondrocytes,and promote cartilage repair through the SOX9/NF-κB/MMP-13 signaling pathway. 展开更多
关键词 Bushen Bitong recipe Osteoarthritis CHONDROCYTES Signaling pathway IL-1Β
下载PDF
The Effect of Nivalenol on Metabolism of Cultured Chondrocytes and the Protection of Selenium 被引量:1
6
作者 楚瑞琦 曹峻岭 +5 位作者 张军芳 谢龙 岳燕 胡小平 李思远 谭升顺 《Journal of Nanjing Medical University》 2003年第3期97-105,共9页
Objective: To investigate the possible effect of nivalenol on metabolism ofthe cultured chondrocytes and the protection of selenium. Methods: The quantitative analyses ofmetabolism in single- layer cultured chondrocyt... Objective: To investigate the possible effect of nivalenol on metabolism ofthe cultured chondrocytes and the protection of selenium. Methods: The quantitative analyses ofmetabolism in single- layer cultured chondrocytes were performed by biocliemical means and theimpairment of DNA was observed by both of the single cell microgel electrophoresis assay and theagarose gel electrophoresis assay. Results: In the media containing different concentrations ofnivalenol (0. 000 5-0. 020 0 mg/L), the amounts of DNA and proteoglycan in matrix of thechondrocytes were decreased. The syn-thesis of protein was reduced and the impairment of DNAdeteriorated with the increase of the concentrations of nivalenol in tlte given dose. When seleniumwas added into the media, the impairment by nivalenol was decreased. In the media containingdifferent concentrations of nivalenol, however, the lipid peroxidation of the chondrocytes was notaffected by nivalenol, yet the amount of lipid peroxides significantly declined. Conclusion:Nivalenol may evidently cause impairment of the chondrocytes when its concentrations are in thepresent experimental range. Selenium can protect cultured cliondrocytes, but cannot prevent theirDNA from being impaired. 展开更多
关键词 nivalenol CHONDROCYTE SELENIUM
下载PDF
Perturbations in Amino Acid Metabolism in Children with Kaschin-Beck Disease: A Study of Urinary Target Metabolomics 被引量:1
7
作者 HU Jian WANG Yu Meng +3 位作者 WANG Wei Yi ZHAO Zhi Jun LI Qiang WANG Li Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2019年第1期34-37,共4页
Kaschin-Beck disease (KBD) is an endemic and chronic osteoarthropathy characterized by pathological aspects including chondrocyte degeneration, necrosis, progressive loss of articular cartilage, and secondary degenera... Kaschin-Beck disease (KBD) is an endemic and chronic osteoarthropathy characterized by pathological aspects including chondrocyte degeneration, necrosis, progressive loss of articular cartilage, and secondary degenerative osteoarthrosis of epiphyseal cartilage, epiphyseal plate cartilage, and articular cartilage, during puberty[1]. The main clinical symptoms are limb joint pain, thickening, deformation, limited movement, muscle atrophy, and in case of more severely affected patients, short fingers (toes), short limbs, and even short stature[1]. 展开更多
关键词 Kaschin-Beck DISEASE (KBD) Chronic OSTEOARTHROPATHY chondrocytic DEGENERATION
下载PDF
Altered Gene Expression in Articular Chondrocytes of Smad3^(ex8/ex8) Mice, Revealed by Gene Profiling Using Microarrays 被引量:2
8
作者 王浩 张继帅 +1 位作者 孙强 杨晓 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第8期698-708,共11页
It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic... It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic differentiation of articular chondrocytes. To further clarify the crucial target genes that mediate transformation growth factor-β (TGF-β)/Smad3 signals on articular chondrocytes differentiation and investigate the underlying molecular mechanism of osteoarthritis, microarrays were used to perform comparative transcriptional profiling in the articular cartilage between Smad3^ex8/ex8and wild-type mice on day five after birth. The gene profding results showed that the activity of bone morphogenetic protein (BMP) and TGF-β/cell division cycle 42 (Cdc42) signaling pathways were enhanced in Smad3^ex8/ex8 chondrocytes. Moreover, there was altered gene expression in growth hormone/insulin-like growth factor 1 (Igfl) axis and fibroblast growth factor (Fgf) signaling pathway. Notably, protein synthesis related genes and electron transport chain related genes were upregulated in Smad3^ex8/ex8 chondrocytes, implying that accelerated protein synthesis and enhanced cellular respiration might contribute to hypertrophic differentiation of articular chondrocytes and the pathogenesis of osteoarthritis. 展开更多
关键词 TGF-β SMAD3 articular chondrocytes hypertrophic differentiation OSTEOARTHRITIS MICROARRAY
下载PDF
T-2 toxin-induced apoptosis involving Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 signaling pathways in human chondrocytes 被引量:19
9
作者 Jing-hong CHEN Jun-ling CAO Yong-lie CHU Zhi-lun WANG Zhan-tian YANG Hong-lin WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第6期455-463,共9页
Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and o... Objective:To investigate the effects of T-2 toxin on expressions of Fas,p53,Bcl-xL,Bcl-2,Bax and caspase-3 on human chondrocytes.Methods:Human chondrocytes were treated with T-2 toxin(1~20 ng/ml)for 5 d.Fas,p53 and other apoptosis-related proteins such as Bax,Bcl-2,Bcl-xL,caspase-3 were determined by Western blot analysis and their mRNA expressions were determined by reverse transcriptase-polymerase chain reaction(RT-PCR).Results:Increases in Fas,p53 and the pro-apoptotic factor Bax protein and mRNA expressions and a decrease of the anti-apoptotic factor Bcl-xL were observed in a dose-dependent manner after exposures to 1~20 ng/ml T-2 toxin,while the expression of the anti-apoptotic factor Bcl-2 was unchanged.Meanwhile,T-2 toxin could also up-regulate the expressions of both pro-caspase-3 and caspase-3 in a dose-dependent manner.Conclusion:These data suggest a possible underlying molecular mechanism for T-2 toxin to induce the apoptosis sig- naling pathway in human chondrocytes by regulation of apoptosis-related proteins. 展开更多
关键词 APOPTOSIS Apoptosis-related proteins CHONDROCYTE T-2 toxin
下载PDF
Increase of TNFα-stimulated Osteoarthritic Chondrocytes Apoptosis and Decrease of Matrix Metalloproteinases 9 by NF-κB Inhibition 被引量:15
10
作者 WANG Yan LI De Ling +5 位作者 ZHANG Xin Bo DUAN Yuan Hui WU Zhi Hong HAO Dong Sheng CHEN Bao Sheng QIU Gui Xing 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第4期277-283,共7页
Objective To investigate the in vitro effect of caffeic acid phenethyl ester (CAPE), a NF-KB inhibitor, on the apoptosis of osteoarthritic (OA) chondrocytes and on the regulation of the gelatinases matrix metallop... Objective To investigate the in vitro effect of caffeic acid phenethyl ester (CAPE), a NF-KB inhibitor, on the apoptosis of osteoarthritic (OA) chondrocytes and on the regulation of the gelatinases matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9). Methods Annexin V-FITC/propidium iodide (PI) labeling and western blotting were used to observe and determine the apoptosis in TNFa-stimulated primary cultured osteoarthritic chondrocytes. Also, gelatin zymography was applied to examine MMP-2 and MMP-9 activities in supernatants. Results it was confirmed by both flow cytometry and western blotting that chondrocytes from OA patients have an apoptotic background. Use of CAPE in combination with 10 ng/mL of TNFa for 24 h facilitated the apoptosis. MMP-9 in the supernatant could be autoactivated (from proMMP-9 to active MMP-9), and the physiologic calcium concentration (2.5 mmol/L) could delay the autoactivation of MMP-9. The activities of MMP-2 and MMP-9 in the fresh supernatant increased significantly in response to stimulation by 10 ng/mL of TNFa for 24 h. The stimulatory effect of TNFa just on proMMP-9 was counteracted significantly by CAPE. Conclusion NF-KB could prevent chondrocytes apoptosis though its activation was attributed to the increase of proMMP-9 activity induced by TNFa (a pro-apoptotic factor). Therefore, therapeutic NF-KB inhibitor was a 'double-edged swords' to the apoptosis of chondrocytes and the secretion of MMP-9. 展开更多
关键词 CHONDROCYTES GELATINASE APOPTOSIS NF-KB Tumor necrosis factor a
下载PDF
DEC1 nuclear expression:A marker of differentiation grade in hepatocellular carcinoma 被引量:15
11
作者 Xiao-Hong Shi Yan Zheng +4 位作者 Qing Sun Jing Cui Qing-Hua Liu Fei Qü Yun-Shan Wang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第15期2037-2043,共7页
AIM: To investigate the expression patterns of human differentiated embryo chondrocyte 1 (DEC1) in hepatocellular carcinoma (HCC) and corresponding adjacent non-tumor and the normal liver tissues, the association betw... AIM: To investigate the expression patterns of human differentiated embryo chondrocyte 1 (DEC1) in hepatocellular carcinoma (HCC) and corresponding adjacent non-tumor and the normal liver tissues, the association between DEC1 expression and histopathological variables and the role of DEC1 in hepatocarcinogenesis. METHODS: The expression of DEC1 was detected immunohistochemically in 176 paraffin-embedded sections from 63 patients with HCC and 50 subjects with normal liver tissues. RESULTS: DEC1 protein was persistently expressed in the cytoplasm of hepatocytes in normal liver and HCC tissues. Compared with adjacent non-tumor liver tissues, HCC tissues showed high nuclear expression of DEC1 protein. However, high DEC1 nuclear expression was more frequently detected in well-differentiated (83.3%) than in moderately (27.3%) and poorly differentiated HCC (16.7%). Low DEC1 expression was associated with poor histological differentiation and malignancy progression. A correlation was found between the nuclear expression of DEC1 protein and histological differentiation (r = 0.376, P = 0.024). CONCLUSION: DEC1 is expressed in the cytoplasm of hepatocytes and because nuclear DEC1 expression is decreased with decreasing differentiation status of HCC, nuclear DEC1 might be a marker of HCC differentiation. 展开更多
关键词 Differentiated embryo chondrocyte 1 Hepatocellular carcinoma DIFFERENTIATION IMMUNOHISTOCHEMISTRY
下载PDF
Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice 被引量:11
12
作者 Jing Xie Jingting Lin +4 位作者 Min Wei Yan Teng Qi He Guan Yang Xiao Yang 《Bone Research》 SCIE CAS CSCD 2019年第3期318-326,共9页
Osteoarthritis(OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are ... Osteoarthritis(OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus.Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-Cre^(ERT2) developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice.Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore,inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA. 展开更多
关键词 CHONDROCYTE ACCUMULATION of Osteoarthritis(OA)
下载PDF
Expression of miRNA-140 in Chondrocytes and Synovial Fluid of Knee Joints in Patients with Osteoarthritis 被引量:9
13
作者 Hai-bo Si Yi Zeng +4 位作者 Zong-ke Zhou Fu-xing Pei Yan-rong Lu Jing-qiu Cheng Bin Shen 《Chinese Medical Sciences Journal》 CAS CSCD 2016年第4期207-212,共6页
Objective To investigate the expression of miRNA-140 in chondrocytes and synovial fluid of osteoarthritis(OA) patients, and explore the relationship between the miRNA-140 expression and OA severity. Methods This study... Objective To investigate the expression of miRNA-140 in chondrocytes and synovial fluid of osteoarthritis(OA) patients, and explore the relationship between the miRNA-140 expression and OA severity. Methods This study enrolled 30 OA patients who underwent total knee arthroplasty for chondrocytes sampling and 30 OA patients who underwent intra-articular injection for synovial fluid sampling. All OA patients were grouped into mild [Kellgren and Lawrence(KL) grade 1-2], moderate(KL grade 3) and severe(KL grade 4), with 10 in each subgroups for each sampling purposes. 7 non-OA patients and 10 patients with knee injury were collected for cartilage and synovial fluid sampling respectively as control groups. Chondrocytes were isolated from the cartilage tissue and cultured in vitro. Quantitative real time PCR for miRNA-140 in chondrocytes and synovial fluid were performed, and the U6 sn RNA was used as internal control. The expression difference of miRNA-140 among groups and correlation between the expression and the KL grade of OA were analysed using one-way ANOVA and Spearman test respectively. Results The expression of miRNA-140 in chondrocytes of knees in OA patients was reduced than that in normal knees, and the between-group difference was statistically significant(F=305.464, P<0.001). miRNA-140 could be detected in synovial fluid of both normal knees and OA knees, its relative expression level was reduced in synovial fluid of OA group compared with normal group, and the between-group difference was statistically significant as well(F=314.245, P<0.001). The relative expression level of miRNA-140 in both chondrocytes and synovial fluid were negatively correlated with the KL grade of OA(r=-0.969, P<0.001; r=-0.970, P<0.001). Conclusion miRNA-140 could be detected in chondrocytes and synovial fluid of OA patients, and its expression was negatively correlated with the severity of OA. 展开更多
关键词 microRNA-140 OSTEOARTHRITIS CHONDROCYTES SYNOVIAL FLUID
下载PDF
Distribution of pericellular matrix molecules in the temporomandibular joint and their chondroprotective effects against inflammation 被引量:7
14
作者 Wern Cui Chu Shipin Zhang +5 位作者 Timothy J Sng Yu Jie Ong Wen-Li Tan Vivien Y Ang Casper B Foldager Wei Seong Toh 《International Journal of Oral Science》 SCIE CAS CSCD 2017年第1期43-52,共10页
The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) in... The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) investigate the effects of PCM molecules on chondrocytes against inflammation in osteoarthritis. Four zones (fibrous, proliferating, mature and hypertrophic) of condylar cartilage and three bands (anterior, intermediate and posterior) of disc were analysed by immunohistochemistry for the presence of PCM molecules in rat TMJs. Isolated chondrocytes were pre-treated with PCM molecules before being subjected to interleukin (IL)-II~ treatment to stimulate inflammation. The responses of the chondrocytes were analysed using gene expression, nitric oxide release and matrix metalloproteinase (MMP)-13 production measures. Histomorphometric analyses revealed that the highest areal deposition of collagen VI (67.4%), collagen IV (45.7%) and laminin (52.4%) was in the proliferating zone of TMJ condylar cartilage. No significant difference in the distribution of PCM molecules was noted among the three bands of the TMJ disc. All three PCM molecules were expressed intracellularly by chondrocytes cultured in the monolayer. Among the PCM molecules, pre-treatment with collagen VI enhanced cellular proliferation, ameliorated IL-lp-induced MMP-3, MMP-9, MMP-13 and inducible nitric oxide synthase gene expression, and attenuated the downregulation of cartilage matrix genes, including collagen I, aggrecan and cartilage oligomeric matrix protein (COMP). Concurrently, collagen VI pretreatment inhibited nitric oxide and MMP-13 production. Our study demonstrates for the first time the distribution and role of PCM molecules, particularly collagen VI, in the protection of chondrocytes against inflammation. 展开更多
关键词 CARTILAGE CHONDROCYTES collagen iV collagen W INFLAMMATION LAMININ pericellular matrix temporomandibular joint
下载PDF
Cartilage repair techniques of the talus: An update 被引量:13
15
作者 Mike H Baums Wolfgang Schultz +1 位作者 Tanja Kostuj Hans-Michael Klinger 《World Journal of Orthopedics》 2014年第3期171-179,共9页
Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in... Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in their origin.Additionally,it is well recognised that the talar articular cartilage strongly differs from that in the knee.Despite this fact,many recommendations for the management of talar cartilage defects are based on approaches that were developed for the knee.Conservative treatment seems to work best in paediatric and adolescent patients with osteochondritis dissecans.However,depending on the size of the lesions,surgical approaches are necessary to treat many of these defects.Bone marrow stimulation techniques may achieve good results in small lesions.Large lesions may be treated by open procedures such as osteochondral autograft transfer or allograft transplantation.Autologous chondrocyte transplantation,as a restorative procedure,is well investigated in the knee and has been applied in the talus with increasing popularity and promising results but the evidence to date is poor.The goals of the current article are to summarise the different options for treating chondral and osteochondral defects of the talus and review the available literature. 展开更多
关键词 Cartilage defect TALUS Repair TECHNIQUES ARTHROSCOPY MARROW stimulation MOSAICPLASTY Autologous CHONDROCYTE implantation
下载PDF
The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification 被引量:10
16
作者 Patrick Aghajanian Subburaman Mohan 《Bone Research》 SCIE CAS CSCD 2018年第3期217-225,共9页
There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchy... There is a worldwide epidemic of skeletal diseases causing not only a public health issue but also accounting for a sizable portion of healthcare expenditures. The vertebrate skeleton is known to be formed by mesenchymal cells condensing into tissue elements(patterning phase) followed by their differentiation into cartilage(chondrocytes) or bone(osteoblasts) cells within the condensations. During the growth and remodeling phase, bone is formed directly via intramembranous ossification or through a cartilage to bone conversion via endochondral ossification routes. The canonical pathway of the endochondral bone formation process involves apoptosis of hypertrophic chondrocytes followed by vascular invasion that brings in osteoclast precursors to remove cartilage and osteoblast precursors to form bone. However, there is now an emerging role for chondrocyte-to-osteoblast transdifferentiation in the endochondral ossification process. Although the concept of "transdifferentiation" per se is not recent,new data using a variety of techniques to follow the fate of chondrocytes in different bones during embryonic and post-natal growth as well as during fracture repair in adults have identified three different models for chondrocyte-to-osteoblast transdifferentiation(direct transdifferentiation, dedifferentiation to redifferentiation, and chondrocyte to osteogenic precursor). This review focuses on the emerging models of chondrocyte-to-osteoblast transdifferentiation and their implications for the treatment of skeletal diseases as well as the possible signaling pathways that contribute to chondrocyte-to-osteoblast transdifferentiation processes. 展开更多
关键词 cartilage(chondrocytes)or bone(osteoblasts) chondrocyte-to-osteoblast
下载PDF
Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9 被引量:9
17
作者 Anat Kohn Timothy P Rutkowski +4 位作者 Zhaoyang Liu Anthony J Mirando Michael J Zuscik Regis J O'Keefe Matthew J Hilton 《Bone Research》 SCIE CAS CSCD 2015年第3期140-151,共12页
RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling c... RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissuespecific Rbpjk mutant(Prx1Cre;Rbpjkf/f), Rbpjk mutant/Sox9 haploinsufficient(Prx1Cre;Rbpjkf/f;Sox9f/1),and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors. 展开更多
关键词 Figure Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9 NICD SOX
下载PDF
A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration 被引量:6
18
作者 Yishan Chen Yeke Yu +11 位作者 Ya Wen Juan Chen Junxin Lin Zixuan Sheng Wenyan Zhou Heng Sun Chengrui An Jiansong Chen Weiliang Wu Chong Teng Wei Wei Hongwei Ouyang 《Bone Research》 SCIE CAS CSCD 2022年第3期578-593,共16页
Articular cartilage damage is a universal health problem.Despite recent progress,chondrocyte dedifferentiation has severely compromised the clinical outcomes of cell-based cartilage regeneration.Loss-of-function chang... Articular cartilage damage is a universal health problem.Despite recent progress,chondrocyte dedifferentiation has severely compromised the clinical outcomes of cell-based cartilage regeneration.Loss-of-function changes are frequently observed in chondrocyte expansion and other pathological conditions,but the characteristics and intermediate molecular mechanisms remain unclear.In this study,we demonstrate a time-lapse atlas of chondrocyte dedifferentiation to provide molecular details and informative biomarkers associated with clinical chondrocyte evaluation.We performed various assays,such as single-cell RNA sequencing(scRNA-seq),live-cell metabolic assays,and assays for transposase-accessible chromatin with high-throughput sequencing(ATAC-seq),to develop a biphasic dedifferentiation model consisting of early and late dedifferentiation stages.Early-stage chondrocytes exhibited a glycolytic phenotype with increased expression of genes involved in metabolism and antioxidation,whereas late-stage chondrocytes exhibited ultrastructural changes involving mitochondrial damage and stress-associated chromatin remodeling.Using the chemical inhibitor BTB06584,we revealed that early and late dedifferentiated chondrocytes possessed distinct recovery potentials from functional phenotype loss.Notably,this two-stage transition was also validated in human chondrocytes.An image-based approach was established for clinical use to efficiently predict chondrocyte plasticity using stage-specific biomarkers.Overall,this study lays a foundation to improve the quality of chondrocytes in clinical use and provides deep insights into chondrocyte dedifferentiation. 展开更多
关键词 CHONDROCYTE CARTILAGE metabolism
下载PDF
The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases 被引量:4
19
作者 Jing Xie Na Fu +4 位作者 Lin-Yi Cai Tao Gong Guo Li Qiang Peng Xiao-Xiao Cai 《International Journal of Oral Science》 SCIE CAS CSCD 2015年第4期220-231,共12页
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little i... Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-11~ restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage. 展开更多
关键词 CHONDROCYTE GELATINASES INTERLEUKIN-1Β matrix crosstalk OSTEOARTHRITIS OSTEOCLAST
下载PDF
In vitro and In vivo Evaluation of the Developed PLGA/HAp/Zein Scaffolds for Bone-Cartilage Interface Regeneration 被引量:6
20
作者 LIN Yong Xin DING Zhi Yong +4 位作者 ZHOU Xiao Bin LI Si Tao XIE De Ming LI Zhi Zhong SUN Guo Dong 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第1期1-12,共12页
Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemic... Objective To investigate the effect of electronspun PLGA/HAp/Zein scaffolds on the repair of cartilage defects. Methods The PLGA/HAp/Zein composite scaffolds were fabricated by electrospinning method. The physiochemical properties and biocompatibility of the scaffolds were separately characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and fourier transform infrared spectroscopy (FTIR), human umbilical cord mesenchymal stem cells (hUC-MSCs) culture and animal experiments. Results The prepared PLGA/HAp/Zein scaffolds showed fibrous structure with homogenous distribution, hUC-MSCs could attach to and grow well on PLGA/HAp/Zein scaffolds, and there was no significant difference between cell proliferation on scaffolds and that without scaffolds (P〉0.05). The PLGA/HAp/Zein scaffolds possessed excellent ability to promote in vivo cartilage formation. Moreover, there was a large amount of immature chondrocytes and matrix with cartilage lacuna on PLGA/HAp/Zein scaffolds. Conclusion The data suggest that the PLGA/HAp/Zein scaffolds possess good biocompatibility, which are anticipated to be potentially applied in cartilage tissue engineering and reconstruction. 展开更多
关键词 hUC-MSCs ELECTROSPUN PLGA/HAp/Zein grafts Cartilage tissue engineering CHONDROCYTE
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部