Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limitin...Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limiting enzymes for SA synthesis.Fusarium head blight(FHB)seriously threatens the safety of wheat production,but increasing the content of SA can enhance FHB resistance.However,the pathway of SA synthesis and regulation in wheat remains unknown.In this study,three wheat ICS(TaICSA,TaICSB,and TaICSD)were identified,and their functions were validated in vitro for isomerizing chorismate to isochorismate.The mutation of one or two homoeoalleles of TaICSA,TaICSB,and TaICSD in the wheat variety‘Cadenza’reduced SA levels under ultraviolet treatment and Fusarium graminearum infection,further enhancing sensitivity to FHB.Overexpression of TaICSA can significantly enhance SA levels and resistance to FHB.To further study SA synthesis pathways in wheat and avoid interference with pathogenicity related genes,the leaves of wild-type Cadenza and different TaICS mutant lines were subjected to ultraviolet treatment for transcriptomic analysis.The results showed that 37 PALs might be involved in endogenous SA synthesis,and 82 WRKY and MYB family transcription factors may regulate the expression of ICS and PAL.These results were further confirmed by RT-PCR.In conclusion,this study expands our knowledge of SA biosynthesis and identifies TaICSA,as well as several additional candidate genes that encode transcription factors for regulating endogenous SA levels,as part of an efficient strategy for enhancing FHB resistance in wheat.展开更多
In the process of infecting plants, plant parasitic nematodes release a series of proteins that play an essential role in the successful infection and pathogenesis of plant cells and tissues through stylets or body wa...In the process of infecting plants, plant parasitic nematodes release a series of proteins that play an essential role in the successful infection and pathogenesis of plant cells and tissues through stylets or body walls. In this study,based on transcriptome data, a chorismate mutase gene of Radopholus similis(RsCM) was identified and cloned,which is a single copy gene specifically expressed in the oesophageal gland and highly expressed in juveniles and females. Transient expression of RsCM in tobacco leaves showed that it was localised in the cytoplasm and nucleus of tobacco leaf cells, which inhibited the pattern-triggered immunity(PTI) induced by flg22, including callose deposition and defence gene expression, and cell death induced by immune elicitors BAX, but could not inhibit cell death induced by immune elicitors Gpa2/RBP-1. The RNA interference(RNAi) transgenic tomato of RsCM obviously inhibited the infection, pathogenicity, and reproduction of R. similis. However, the resistance of the overexpression transgenic tomato of RsCM to R. similis infection was significantly reduced, and the expression levels of two salicylic acid(SA) pathway genes(PR1 and PR5) in roots infected by the nematode were significantly down-regulated,which indicated that RsCM might be involved in the inhibition of SA pathway. The results of this study demonstrate that RsCM suppresses the host immune system and might be a new target for the control of R. similis, which also provides new data for the function and mechanism of CM genes of migratory parasitic plant nematodes.展开更多
The soybean cyst nematode, Heterodeara glycines, is a serious pathogen of soybean, and reported to be the host of a wide range of Fabaceae. In the present study, the host specificity and reproductivity of two populati...The soybean cyst nematode, Heterodeara glycines, is a serious pathogen of soybean, and reported to be the host of a wide range of Fabaceae. In the present study, the host specificity and reproductivity of two populations of H. glycines collected from soybean and tobacco were identified and characterized. The comparative identity between β-1,4-endoglucanase, pectate lyase and chorismate mutase of H. glycines parasitizing on soybean and tobacco were 99, 97 and 98%, respectively. The qR T-PCR analysis indicated that the expression of pectate lyase 2 gene was significantly higher in second-stage juveniles of H. glycines Henan population parasitizing on tobacco than that of H. glycines Shanxi population parasitizing on soybean. In addition, the pectic acid content of cell wall was significantly higher(45%) in the roots of tobacco than the roots of soybean. Our results indicate that the changes in transcript parasitism genes may be a result of long-term evolution illustrating how a plant-parasitic nematode adapts to the host environment for optimal infestation and survival.展开更多
基金supported by the National Natural Science Foundation of China(3210170116)the Science and Technology Department of Sichuan Province(2022YFSY0035).
文摘Salicylic acid(SA),a vital endogenous hormone,plays a crucial role in plant growth and the response to abiotic and biotic stress.Isochorismate synthase(ICS)and phenylalanine ammonia lyase(PAL)are critical rate-limiting enzymes for SA synthesis.Fusarium head blight(FHB)seriously threatens the safety of wheat production,but increasing the content of SA can enhance FHB resistance.However,the pathway of SA synthesis and regulation in wheat remains unknown.In this study,three wheat ICS(TaICSA,TaICSB,and TaICSD)were identified,and their functions were validated in vitro for isomerizing chorismate to isochorismate.The mutation of one or two homoeoalleles of TaICSA,TaICSB,and TaICSD in the wheat variety‘Cadenza’reduced SA levels under ultraviolet treatment and Fusarium graminearum infection,further enhancing sensitivity to FHB.Overexpression of TaICSA can significantly enhance SA levels and resistance to FHB.To further study SA synthesis pathways in wheat and avoid interference with pathogenicity related genes,the leaves of wild-type Cadenza and different TaICS mutant lines were subjected to ultraviolet treatment for transcriptomic analysis.The results showed that 37 PALs might be involved in endogenous SA synthesis,and 82 WRKY and MYB family transcription factors may regulate the expression of ICS and PAL.These results were further confirmed by RT-PCR.In conclusion,this study expands our knowledge of SA biosynthesis and identifies TaICSA,as well as several additional candidate genes that encode transcription factors for regulating endogenous SA levels,as part of an efficient strategy for enhancing FHB resistance in wheat.
基金funded by the Guangdong Basic and Applied Basic Research Foundation,China(2021A1515011273)he National Natural Science Foundation of China(31071665)。
文摘In the process of infecting plants, plant parasitic nematodes release a series of proteins that play an essential role in the successful infection and pathogenesis of plant cells and tissues through stylets or body walls. In this study,based on transcriptome data, a chorismate mutase gene of Radopholus similis(RsCM) was identified and cloned,which is a single copy gene specifically expressed in the oesophageal gland and highly expressed in juveniles and females. Transient expression of RsCM in tobacco leaves showed that it was localised in the cytoplasm and nucleus of tobacco leaf cells, which inhibited the pattern-triggered immunity(PTI) induced by flg22, including callose deposition and defence gene expression, and cell death induced by immune elicitors BAX, but could not inhibit cell death induced by immune elicitors Gpa2/RBP-1. The RNA interference(RNAi) transgenic tomato of RsCM obviously inhibited the infection, pathogenicity, and reproduction of R. similis. However, the resistance of the overexpression transgenic tomato of RsCM to R. similis infection was significantly reduced, and the expression levels of two salicylic acid(SA) pathway genes(PR1 and PR5) in roots infected by the nematode were significantly down-regulated,which indicated that RsCM might be involved in the inhibition of SA pathway. The results of this study demonstrate that RsCM suppresses the host immune system and might be a new target for the control of R. similis, which also provides new data for the function and mechanism of CM genes of migratory parasitic plant nematodes.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest in China (201503114)
文摘The soybean cyst nematode, Heterodeara glycines, is a serious pathogen of soybean, and reported to be the host of a wide range of Fabaceae. In the present study, the host specificity and reproductivity of two populations of H. glycines collected from soybean and tobacco were identified and characterized. The comparative identity between β-1,4-endoglucanase, pectate lyase and chorismate mutase of H. glycines parasitizing on soybean and tobacco were 99, 97 and 98%, respectively. The qR T-PCR analysis indicated that the expression of pectate lyase 2 gene was significantly higher in second-stage juveniles of H. glycines Henan population parasitizing on tobacco than that of H. glycines Shanxi population parasitizing on soybean. In addition, the pectic acid content of cell wall was significantly higher(45%) in the roots of tobacco than the roots of soybean. Our results indicate that the changes in transcript parasitism genes may be a result of long-term evolution illustrating how a plant-parasitic nematode adapts to the host environment for optimal infestation and survival.