期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inhibition of proliferation of retinal vascular endothelial cells more effectively than choroidal vascular endothelial cell proliferation by bevacizumab 被引量:3
1
作者 Bharani Krishna Mynampati Kumar Sambhav +1 位作者 Sandeep Grover Kakarla V.Chalam 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第1期15-22,共8页
AIM: To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular ... AIM: To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular endothelial cells (RVECs) in vitro.METHODS: VEGF (400 ng/mL) enriched CVECs and RVECs were treated with escalating doses of bevacizumab (0.1, 0.5, 1, 1.5 and 2 mg/mL). Cell proliferation changes were analyzed with WST-1 assay and trypan blue exclusion assay at 48, 72h and 1wk. Morphological changes were recorded with bright field microscopy.RESULTS: VEGF enriched RVECs showed significantly more decline of cell viability than CVECs after bevacizumab treatment. One week after treatment, RVEC cell proliferation decreased by 29.7%, 37.5%, 52.8%, 35.9% and 45.6% at 0.1, 0.5, 1.0, 1.5 and 2 mg/mL bevacizumab respectively compared to CVEC proliferation decrease of 4.1%, 7.7%, 2.4%, 4.1% and 17.7% (P〈0.05) by WST-1 assay. Trypan blue exclusion assay also revealed similar decrease in RVEC proliferation of 20%, 60%, 73.3%, 80% and 93.3% compared to CVEC proliferation decrease of 4%, 12%, 22.9%, 16.7% and 22.2% respectively (P〈0.05). The maximum differential effect between the two cell types was observed at bevacizumab doses of 1.0 and 1.5 mg/mL at all time points. RVECs were 22 fold more sensitive (P〈0.01) compared to CVECs (52.8% vs 2.4%) at concentration of 1.0 mg/mL, and 8.7 fold more at 1.5 mg/mL (35.9% vs 4.1%) 1wk after treatment (P〈0.05 respectively).CONCLUSION: VEGF-enriched RVECs are more susceptible to bevacizumab inhibition than CVECs at clinically used dosage of 1.25 mg and this differential sensitivity between two cell types should be taken into consideration in dosage selection. 展开更多
关键词 BEVACIZUMAB retinal vascular endothelialcells choroidal vascular endothelial cells
下载PDF
Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism 被引量:16
2
作者 Guang-Hui He Wei Zhang +4 位作者 Ying-Xue Ma Jing Yang Li Chen Jian Song Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第4期559-566,共8页
AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retina... AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retinal pigment epithelial(RPE) cells and laser-induced choroidal neovascularization(CNV) in rats.METHODS: Exosomes were isolated from h UCMSCs and characterized by transmission electron microscope and Western blot. MSCs-derived exosomes were cultured with RPE cells exposed to blue light. The m RNA and protein expression of VEGF-A were determined by real time-polymerase chain reaction(PCR) and Western blot, respectively. Immunofluorescence assay was used for the detection of the expression level of VEGF-A. We injected different doses of MSCs-derived exosomes intravitreally to observe and compare their effects in a mouse model of laserinduced retinal injury. The histological structure of CNV in rats was inspected by hematoxylin-eosin(HE) staining and fundus fluorescein angiography. The expression of VEGF-A was detected by immunohistochemistry.RESULTS: Exosomes exhibited the typical characteristic morphology(cup-shaped) and size(diameter between 50 and 150 nm). The exosomes marker, CD63, and h UCMSCs marker, CD90, showed a robust presence. In vitro, MSCsderived exosomes downregulated the m RNA(Exo-L: t=6.485, 7.959, 9.286; Exo-M: t=7.517, 10.170, 13.413; Exo-H: t=10.317, 12.234, 14.592, P〈0.05) and protein(Exo-L: t=2.945, 4.477, 6.657; Exo-M: t=4.713, 6.421, 8.836; Exo-H:t=6.539, 12.194, 12.783; P〈0.05) expression of VEGF-A in RPE cells after blue light stimulation. In vivo, we found that the MSCs-derived exosomes reduced damage, distinctly downregulated VEGF-A(Exo-H: t=0.957, 1.382; P〈0.05), and gradually improved the histological structures of CNV for a better visual function(Exo-L: 0.346, Exo-M: 3.382, Exo-H: 8.571; P〈0.05). CONCLUSION: MSCs-derived exosomes ameliorate blue light stimulation in RPE cells and laser-induced retinal injury via downregulation of VEGF-A. 展开更多
关键词 exosome human umbilical cord mesenchymal stem cell retinal pigment epithelial cell choroidal neovascularization vascular endothelial growth factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部