Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ...Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.展开更多
For a general graph G, M(G) denotes its Mycielski graph. This article gives a number of new sufficient conditions for G to have the circular chromatic number xc(M(G)) equals to the chromatic number x(M(G)), ...For a general graph G, M(G) denotes its Mycielski graph. This article gives a number of new sufficient conditions for G to have the circular chromatic number xc(M(G)) equals to the chromatic number x(M(G)), which have improved some best sufficient conditions published up to date.展开更多
The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z,D) , with a distance set D , is the infinite graph with vertex set Z={0,±1,±2,...} in which tw...The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z,D) , with a distance set D , is the infinite graph with vertex set Z={0,±1,±2,...} in which two vertices x and y are adjacent iff y-x∈D . This paper determines the circular chromatic numbers of two classes of distance graphs G(Z,D m,k,k+1 ) and G(Z,D m,k,k+1,k+2 ).展开更多
The circular chromatic number of a graph is a natural generalization of the chromatic number. Circular chromatic number contains more information about the structure of a graph than chromatic number does. In this pape...The circular chromatic number of a graph is a natural generalization of the chromatic number. Circular chromatic number contains more information about the structure of a graph than chromatic number does. In this paper we obtain the circular chromatic numbers of special graphs such as C t k and C t k-v, and give a simple proof of the circular chromatic number of H m,n .展开更多
For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph...For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph G is the minimum of k/d for which G admits a homomorphism to G^dk. The relationship between χc( G- v) and χc (G)is investigated. In particular, the circular chromatic number of G^dk - v for any vertex v is determined. Some graphs withx χc(G - v) =χc(G) - 1 for any vertex v and with certain properties are presented. Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ- 1 + 1/α is proved, where χ is the chromatic number of G and a is its independence number.展开更多
The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, t...The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G).展开更多
A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also ...A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.展开更多
By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph...By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph(the Theorem 2), respectively.展开更多
Let G be an outerplane graph with maximum degree A and the entire chromatic number Xvef(G). This paper proves that if △ ≥6, then △+ 1≤Xvef(G)≤△+ 2, and Xvef (G) = △+ 1 if and only if G has a matching M...Let G be an outerplane graph with maximum degree A and the entire chromatic number Xvef(G). This paper proves that if △ ≥6, then △+ 1≤Xvef(G)≤△+ 2, and Xvef (G) = △+ 1 if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree.展开更多
Let x(G^2) denote the chromatic number of the square of a maximal outerplanar graph G and Q denote a maximal outerplanar graph obtained by adding three chords y1 y3, y3y5, y5y1 to a 6-cycle y1y2…y6y1. In this paper...Let x(G^2) denote the chromatic number of the square of a maximal outerplanar graph G and Q denote a maximal outerplanar graph obtained by adding three chords y1 y3, y3y5, y5y1 to a 6-cycle y1y2…y6y1. In this paper, it is proved that △ + 1 ≤ x(G^2) ≤△ + 2, and x(G^2) = A + 2 if and only if G is Q, where A represents the maximum degree of G.展开更多
Let G be a graph and k be a positive integer. We consider a game with two players Alice and Bob who alternate in coloring the vertices of G with a set of k colors. In every turn, one vertex will be chosen by one playe...Let G be a graph and k be a positive integer. We consider a game with two players Alice and Bob who alternate in coloring the vertices of G with a set of k colors. In every turn, one vertex will be chosen by one player. Alice’s goal is to color all vertices with the k colors, while Bob’s goal is to prevent her. The game chromatic number denoted by?χg(G), is the smallest k such that Alice has a winning strategy with k colors. In this paper, we determine the game chromatic number?χg of circulant graphs?Cn(1,2), , and generalized Petersen graphs GP(n,2), GP(n,3).展开更多
With its comprehensive application in network information engineering (e. g. dynamic spectrum allocation under different distance constraints ) and in network combination optimization (e. g. safe storage of deleter...With its comprehensive application in network information engineering (e. g. dynamic spectrum allocation under different distance constraints ) and in network combination optimization (e. g. safe storage of deleterious materials), the graphs' cloring theory and chromatic uniqueness theory have been the forward position of graph theory research. The later concerns the equivalent classification of graphs with their color polynomials and the determination of uniqueness of some equivalent classification under isomorphism. In this paper, by introducing the concept of chromatic normality and comparing the number of partitions of two chromatically equivalent graphs, a general numerical condition guarenteeing that bipartite graphs K ( m, n) - A (A belong to E(K (m, n) ) and | A |≥ 2) is chromatically unique was obtained and a lot of chromatic uniqueness graphs of bipartite graphs K(m, n) - A were determined. The results obtained in this paper were general. And the results cover and extend the majority of the relevant results obtained within the world.展开更多
The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condi...The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condition guaranteeing that K( m, n) - A ( I A ] = 2) is chromatically unique were obtained. This covers and improves the former correlative results.展开更多
An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(...An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(Z,D) )=4 where P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as is 1 or 2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes, Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schroder primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of prime numbers in class 2 category.展开更多
A set <em>S ⊆ V (G)</em> is called a geodetic set if every vertex of <em>G</em> lies on a shortest <em>u-v</em> path for some <em>u, v ∈ S</em>, the minimum cardinality...A set <em>S ⊆ V (G)</em> is called a geodetic set if every vertex of <em>G</em> lies on a shortest <em>u-v</em> path for some <em>u, v ∈ S</em>, the minimum cardinality among all geodetic sets is called geodetic number and is denoted by <img src="Edit_82259359-0135-4a65-9378-b767f0405b48.png" alt="" />. A set <em>C ⊆ V (G)</em> is called a chromatic set if <em>C</em> contains all vertices of different colors in<em> G</em>, the minimum cardinality among all chromatic sets is called the chromatic number and is denoted by <img src="Edit_d849148d-5778-459b-abbb-ff25b5cd659b.png" alt="" />. A geo-chromatic set<em> S</em><sub><em>c</em></sub><em> ⊆ V (G</em><em>)</em> is both a geodetic set and a chromatic set. The geo-chromatic number <img src="Edit_505e203c-888c-471c-852d-4b9c2dd1a31c.png" alt="" /><em> </em>of<em> G</em> is the minimum cardinality among all geo-chromatic sets of<em> G</em>. In this paper, we determine the geodetic number and the geo-chromatic number of 2-cartesian product of some standard graphs like complete graphs, cycles and paths.展开更多
Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices o...Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices of G.展开更多
A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equit...A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equitable total chromatic?number. In this paper, we prove some theorems on equitable?total coloring and derive the equitable total chromatic numbers?of Pm V?Sn, Pm V?Fn and Pm V Wn.展开更多
For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been wid...For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.展开更多
A planar graph G is called a i pseudo outerplanar graph if there is a subset V 0V(G),|V 0|=i, such that G-V 0 is an outerplanar graph. In particular, when G-V 0 is a forest, G is called a i...A planar graph G is called a i pseudo outerplanar graph if there is a subset V 0V(G),|V 0|=i, such that G-V 0 is an outerplanar graph. In particular, when G-V 0 is a forest, G is called a i pseudo tree. In this paper, the following results are proved: (i) The conjecture on the total coloring is true for all 1 pseudo outerplanar graphs; (ii) χ t(G)=Δ(G)+1 for any 1 pseudo outerplanar graph G with Δ(G)6 and for any 1 pseudo tree G with Δ(G)3, where χ t(G) is the total chromatic number of a graph G .展开更多
文摘Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.
基金Supported by National Science Foundation of China (10371048)the Science Foundation of Three Gorges University.
文摘For a general graph G, M(G) denotes its Mycielski graph. This article gives a number of new sufficient conditions for G to have the circular chromatic number xc(M(G)) equals to the chromatic number x(M(G)), which have improved some best sufficient conditions published up to date.
文摘The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z,D) , with a distance set D , is the infinite graph with vertex set Z={0,±1,±2,...} in which two vertices x and y are adjacent iff y-x∈D . This paper determines the circular chromatic numbers of two classes of distance graphs G(Z,D m,k,k+1 ) and G(Z,D m,k,k+1,k+2 ).
文摘The circular chromatic number of a graph is a natural generalization of the chromatic number. Circular chromatic number contains more information about the structure of a graph than chromatic number does. In this paper we obtain the circular chromatic numbers of special graphs such as C t k and C t k-v, and give a simple proof of the circular chromatic number of H m,n .
基金The National Natural Science Foundation of China(No.10671033)
文摘For two integers k and d with (k, d) = 1 and k≥2d, let G^dk be the graph with vertex set {0,1,…k - 1 } in which ij is an edge if and only if d≤| i -j I|≤k - d. The circular chromatic number χc(G) of a graph G is the minimum of k/d for which G admits a homomorphism to G^dk. The relationship between χc( G- v) and χc (G)is investigated. In particular, the circular chromatic number of G^dk - v for any vertex v is determined. Some graphs withx χc(G - v) =χc(G) - 1 for any vertex v and with certain properties are presented. Some lower bounds for the circular chromatic number of a graph are studied, and a necessary and sufficient condition under which the circular chromatic number of a graph attains the lower bound χ- 1 + 1/α is proved, where χ is the chromatic number of G and a is its independence number.
基金This research is supported by NNSF of China(40301037, 10471131)
文摘The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G).
基金This research is partially supported by NNSF of China.
文摘A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.
基金Supported by the NNSF of China(10861009)Supported by the Ministry of Education Science and Technology Item of China(206156)
文摘By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph(the Theorem 2), respectively.
文摘Let G be an outerplane graph with maximum degree A and the entire chromatic number Xvef(G). This paper proves that if △ ≥6, then △+ 1≤Xvef(G)≤△+ 2, and Xvef (G) = △+ 1 if and only if G has a matching M consisting of some inner edges which covers all its vertices of maximum degree.
文摘Let x(G^2) denote the chromatic number of the square of a maximal outerplanar graph G and Q denote a maximal outerplanar graph obtained by adding three chords y1 y3, y3y5, y5y1 to a 6-cycle y1y2…y6y1. In this paper, it is proved that △ + 1 ≤ x(G^2) ≤△ + 2, and x(G^2) = A + 2 if and only if G is Q, where A represents the maximum degree of G.
文摘Let G be a graph and k be a positive integer. We consider a game with two players Alice and Bob who alternate in coloring the vertices of G with a set of k colors. In every turn, one vertex will be chosen by one player. Alice’s goal is to color all vertices with the k colors, while Bob’s goal is to prevent her. The game chromatic number denoted by?χg(G), is the smallest k such that Alice has a winning strategy with k colors. In this paper, we determine the game chromatic number?χg of circulant graphs?Cn(1,2), , and generalized Petersen graphs GP(n,2), GP(n,3).
基金Natural Science Foundation of Fujian, China (No.S0650011)
文摘With its comprehensive application in network information engineering (e. g. dynamic spectrum allocation under different distance constraints ) and in network combination optimization (e. g. safe storage of deleterious materials), the graphs' cloring theory and chromatic uniqueness theory have been the forward position of graph theory research. The later concerns the equivalent classification of graphs with their color polynomials and the determination of uniqueness of some equivalent classification under isomorphism. In this paper, by introducing the concept of chromatic normality and comparing the number of partitions of two chromatically equivalent graphs, a general numerical condition guarenteeing that bipartite graphs K ( m, n) - A (A belong to E(K (m, n) ) and | A |≥ 2) is chromatically unique was obtained and a lot of chromatic uniqueness graphs of bipartite graphs K(m, n) - A were determined. The results obtained in this paper were general. And the results cover and extend the majority of the relevant results obtained within the world.
基金Supported by the Natural Science Foundation of Jiangxi , China (No.0511006)
文摘The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condition guaranteeing that K( m, n) - A ( I A ] = 2) is chromatically unique were obtained. This covers and improves the former correlative results.
文摘An integer distance graph is a graph G(Z,D) with the set of integers as vertex set and an edge joining two vertices u and?v if and only if ∣u - v∣D where D is a subset of the positive integers. It is known that x(G(Z,D) )=4 where P is a set of Prime numbers. So we can allocate the subsets D of P to four classes, accordingly as is 1 or 2 or 3 or 4. In this paper we have considered the open problem of characterizing class three and class four sets when the distance set D is not only a subset of primes P but also a special class of primes like Additive primes, Deletable primes, Wedderburn-Etherington Number primes, Euclid-Mullin sequence primes, Motzkin primes, Catalan primes, Schroder primes, Non-generous primes, Pell primes, Primeval primes, Primes of Binary Quadratic Form, Smarandache-Wellin primes, and Highly Cototient number primes. We also have indicated the membership of a number of special classes of prime numbers in class 2 category.
文摘A set <em>S ⊆ V (G)</em> is called a geodetic set if every vertex of <em>G</em> lies on a shortest <em>u-v</em> path for some <em>u, v ∈ S</em>, the minimum cardinality among all geodetic sets is called geodetic number and is denoted by <img src="Edit_82259359-0135-4a65-9378-b767f0405b48.png" alt="" />. A set <em>C ⊆ V (G)</em> is called a chromatic set if <em>C</em> contains all vertices of different colors in<em> G</em>, the minimum cardinality among all chromatic sets is called the chromatic number and is denoted by <img src="Edit_d849148d-5778-459b-abbb-ff25b5cd659b.png" alt="" />. A geo-chromatic set<em> S</em><sub><em>c</em></sub><em> ⊆ V (G</em><em>)</em> is both a geodetic set and a chromatic set. The geo-chromatic number <img src="Edit_505e203c-888c-471c-852d-4b9c2dd1a31c.png" alt="" /><em> </em>of<em> G</em> is the minimum cardinality among all geo-chromatic sets of<em> G</em>. In this paper, we determine the geodetic number and the geo-chromatic number of 2-cartesian product of some standard graphs like complete graphs, cycles and paths.
基金Project supported by the Vatural SCience Foundation of LNEC.
文摘Let G be a maximal outerplane graph and X0(G) the complete chromatic number of G. This paper determines exactly X0(G) for △(G)≠5 and proves 6≤X0.(G)≤7 for △(G) = 5, where △(G) is the maximum degree of vertices of G.
文摘A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equitable total chromatic?number. In this paper, we prove some theorems on equitable?total coloring and derive the equitable total chromatic numbers?of Pm V?Sn, Pm V?Fn and Pm V Wn.
文摘For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.
文摘A planar graph G is called a i pseudo outerplanar graph if there is a subset V 0V(G),|V 0|=i, such that G-V 0 is an outerplanar graph. In particular, when G-V 0 is a forest, G is called a i pseudo tree. In this paper, the following results are proved: (i) The conjecture on the total coloring is true for all 1 pseudo outerplanar graphs; (ii) χ t(G)=Δ(G)+1 for any 1 pseudo outerplanar graph G with Δ(G)6 and for any 1 pseudo tree G with Δ(G)3, where χ t(G) is the total chromatic number of a graph G .