Determining the binding sites of the transcription factor is important for understanding of transcriptional regulation. Transcription factor c-Jun plays an important role in cell growth, differentiation and developmen...Determining the binding sites of the transcription factor is important for understanding of transcriptional regulation. Transcription factor c-Jun plays an important role in cell growth, differentiation and development, but the binding sites and the target genes are not clearly defined in the whole human genome. In this study, we performed a ChIP-Seq experiment to identify c-Jun binding site in the human genome. Forty-eight binding sites were selected to process further evaluation by dsDNA microarray assay. We identified 283 c-Jun binding sites in K562 cells. Data analysis showed that 48.8% binding sites located within 100 kb of the upstream of the annotated genes, 28.6% binding sites comprised consensus TRE/CRE motif (5′-TGAC/GTCA-3′, 5′-TGACGTCA-3′) and variant sequences. Forty-two out of the selected 48 binding sites were found to bind the c-Jun homodimer in dsDNA microarray analysis. Data analysis also showed that 1569 genes are located in the neighborhood of the 283 binding sites and 191 genes in the neighborhood of the 42 binding sites validated by dsDNA microarray. We consulted 38 c-Jun target genes in previous studies and 16 among these 38 genes were also detected in this study. The identification of c-Jun binding sites and potential target genes in the genome scale may improve our fundamental understanding in the molecular mechanisms underlying the transcription regulation related to c-Jun.展开更多
基金supported by the National Natural Science Foundation of China(Nos.30973375 and 30600152)
文摘Determining the binding sites of the transcription factor is important for understanding of transcriptional regulation. Transcription factor c-Jun plays an important role in cell growth, differentiation and development, but the binding sites and the target genes are not clearly defined in the whole human genome. In this study, we performed a ChIP-Seq experiment to identify c-Jun binding site in the human genome. Forty-eight binding sites were selected to process further evaluation by dsDNA microarray assay. We identified 283 c-Jun binding sites in K562 cells. Data analysis showed that 48.8% binding sites located within 100 kb of the upstream of the annotated genes, 28.6% binding sites comprised consensus TRE/CRE motif (5′-TGAC/GTCA-3′, 5′-TGACGTCA-3′) and variant sequences. Forty-two out of the selected 48 binding sites were found to bind the c-Jun homodimer in dsDNA microarray analysis. Data analysis also showed that 1569 genes are located in the neighborhood of the 283 binding sites and 191 genes in the neighborhood of the 42 binding sites validated by dsDNA microarray. We consulted 38 c-Jun target genes in previous studies and 16 among these 38 genes were also detected in this study. The identification of c-Jun binding sites and potential target genes in the genome scale may improve our fundamental understanding in the molecular mechanisms underlying the transcription regulation related to c-Jun.