期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Genes for RNA-binding proteins involved in neuralspecific functions and diseases are downregulated in Rubinstein-Taybi iNeurons 被引量:2
1
作者 Lidia Larizza Luciano Calzari +1 位作者 Valentina Alari Silvia Russo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第1期5-14,共10页
Taking advantage of the fast-growing knowledge of RNA-binding proteins(RBPs)we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons(iNeurons)modelling the ... Taking advantage of the fast-growing knowledge of RNA-binding proteins(RBPs)we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons(iNeurons)modelling the neurodevelopmental Rubinstein Taybi Syndrome(RSTS)caused by mutations in the genes encoding CBP/p300 acetyltransferases.We discuss top and functionally connected downregulated genes sorted to“RNA processing”and“Ribonucleoprotein complex biogenesis”Gene Ontology clusters.The first set of downregulated RBPs includes members of hnRNHP(A1,A2B1,D,G,H2-H1,MAGOHB,PAPBC),core subunits of U small nuclear ribonucleoproteins and Serine-Arginine splicing regulators families,acting in precursor messenger RNA alternative splicing and processing.Consistent with literature findings on reduced transcript levels of serine/arginine repetitive matrix 4(SRRM4)protein,the main regulator of the neural-specific microexons splicing program upon depletion of Ep300 and Crebbp in mouse neurons,RSTS iNeurons show downregulated genes for proteins impacting this network.We link downregulated genes to neurological disorders including the new HNRNPH1-related intellectual disability syndrome with clinical overlap to RSTS.The set of downregulated genes for Ribosome biogenesis includes several components of ribosomal subunits and nucleolar proteins,such NOP58 and fibrillarin that form complexes with snoRNAs with a central role in guiding post-transcriptional modifications needed for rRNA maturation.These nucleolar proteins are“dual”players as fibrillarin is also required for epigenetic regulation of ribosomal genes and conversely NOP58-associated snoRNA levels are under the control of NOP58 interactor BMAL1,a transcriptional regulator of the circadian rhythm.Additional downregulated genes for“dual specificity”RBPs such as RUVBL1 and METTL1 highlight the links between chromatin and the RBP-ome and the contribution of perturbations in their cross-talk to RSTS.We underline the hub position of CBP/p300 in chromatin regulation,the impact of its defect on neurons’post-transcriptional regulation of gene expression and the potential use of epidrugs in therapeutics of RBP-caused neurodevelopmental disorders. 展开更多
关键词 alternative splicing CBP/p300 chromatin regulators downregulated genes induced pluripotent stem cell-neurons neurodevelopmental disorders ribosome biogenesis RNA-binding proteins RNASEQ Rubinstein-Taybi
下载PDF
Structure and regulation of the chromatin remodeller ISWI 被引量:1
2
《Science Foundation in China》 CAS 2017年第1期3-3,共1页
Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their w... Subject Code:C05With the support by the National Natural Science Foundation of China,the research team led by Dr.Chen Zhucheng(陈柱成)at the School of Life Science,Tsinghua University,Beijing,recently reported their work,titled'Structure and regulation of the chromatin remodeller ISWI',in Nature(2016,540:466—469).Chromatin is the life blueprint of eukaryotes.Chromatin remodellers utilize the energy of ATP hydrolysis to move,destabilize,eject,or restructure nucleosomes,building and rebuilding the blueprint 展开更多
关键词 Structure and regulation of the chromatin remodeller ISWI
原文传递
Epigenetic Modifications and Plant Hormone Action 被引量:9
3
作者 Chizuko Yamamuro Jian-Kang Zhu Zhenbiao Yang 《Molecular Plant》 SCIE CAS CSCD 2016年第1期57-70,共14页
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones ... The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mech- anisms reaulatino eoioenetic modifications. 展开更多
关键词 EPIGENETICS AUXIN plant hormones gene expression chromatin regulation DNA methylation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部