Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-p...Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.展开更多
Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers ...Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.展开更多
This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffra...This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffraction(XRD) studies show that(ZnO)(VO)composites have the poly crystalline wurtzite structure of hexagonal Zn O. It is found from the XRD results that the lattice constants and the crystallite size increase while the dislocation density decreases with increase in doping concentration. The existence of E1(TO) and E2(high) Raman modes show that the Zn O still preserve wurtzite structure after doping vanadium oxide, which is in agreement with XRD results. Room temperature photoluminescence(PL) exhibit near band edge and broad deep level emission while indicating the suppression of deep level emission with the incorporation of VOup to a certain concentration(x < 9). Moreover, the optical band gap increase with doping, which is accompanied by the blue shift of the NBE emission.展开更多
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.61425021)the Natural Natural Science Foundation of China(Grant Nos.11374296,61376054,61475153,and 61604132)
文摘Deep-ultraviolet(DUV) light-emitting devices(LEDs) have a variety of potential applications.Zinc-oxide-based materials,which have wide bandgap and large exciton binding energy,have potential applications in high-performance DUV LEDs.To realize such optoelectronic devices,the modulation of the bandgap is required.This has been demonstrated by the developments of Mg_xZn_(1-x)O and Be_xZn_(1-x)O alloys for the larger bandgap materials.Many efforts have been made to obtain DUV LEDs,and promising successes have been achieved continuously.In this article,we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.
基金partially supported by the National Natural Science Foundation of China(Nos.51702326 and 51872296)the Liaoning Province Natural Science Foundation(No.2019-MS333)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019197)the Shenyang National Laboratory for Materials Science(No.L2019F36)the Shenyang Planning Project of Science and Technology(No.18-013-0-52)Tomsk Polytechnic University Competitiveness Enhancement Program grant with project number TPU CEP NOC N.M.Kizhnera188/2020。
文摘Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.
文摘This paper demonstrates the structural, vibrational and photoluminescence characteristics of(ZnO)(VO)(x = 0, 3, 6 and 9 mol%) composites semiconductor synthesized by using the solid state reaction method. X-ray diffraction(XRD) studies show that(ZnO)(VO)composites have the poly crystalline wurtzite structure of hexagonal Zn O. It is found from the XRD results that the lattice constants and the crystallite size increase while the dislocation density decreases with increase in doping concentration. The existence of E1(TO) and E2(high) Raman modes show that the Zn O still preserve wurtzite structure after doping vanadium oxide, which is in agreement with XRD results. Room temperature photoluminescence(PL) exhibit near band edge and broad deep level emission while indicating the suppression of deep level emission with the incorporation of VOup to a certain concentration(x < 9). Moreover, the optical band gap increase with doping, which is accompanied by the blue shift of the NBE emission.