Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont...Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.展开更多
Phase transition of LaCrO3 and doped-LaCrO3 was studied by DSC, TG and XRD, and thermal expansion during the transition was analyzed. It is found that phase transition of LaCrO3 begins at about 240℃ and ends at about...Phase transition of LaCrO3 and doped-LaCrO3 was studied by DSC, TG and XRD, and thermal expansion during the transition was analyzed. It is found that phase transition of LaCrO3 begins at about 240℃ and ends at about 265 ℃. Temperatures of phase transition rise obviously with increasing Ca^2+ content. The transition of LaCrO3 and Ca-doped LaCrO3 from orthorhombic to rhombohedral is accompanied with endothermic reaction. No obvious change occurs in mass, but remarkable shrinkage occurs during phase transition.展开更多
The Kuda ophiolite belongs to the early Paleozoic ophiolite belt in Western Kunlun Mountains and is composed of metamorphic peridotites,cumulate peridotites,mafic volcanic rocks and quartzites(Li et al.,
The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolit...The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium--osmium--iridium (Ru--Os--Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4--5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni--Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and esti- mated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.展开更多
The temperature dependence of the magnetic properties was systemically studied by dc/ac magnetization and specific heat measurement for heavy rare earth HoCrO3 chromites.The results revealed the existence of complex p...The temperature dependence of the magnetic properties was systemically studied by dc/ac magnetization and specific heat measurement for heavy rare earth HoCrO3 chromites.The results revealed the existence of complex phase coexistence and competitive magnetic behavior in HoCrO3 chromites.It was found that,in the region of higher temperature above 141.0 K,HoCrO3 behaved as a typical Curie-Weiss paramagnetic(PM).And in the region of low temperature,a novel magnetization behavior was observed with negative magnetization(diamagnetism-like) characteristics under an external field of 100 Oe and M-T curves exhibited two symmetrical branches for field cooling(FC) and zero field cooling(ZFC) modes.This behavior indicated the coexistence of canted antiferromagnetic(CAFM) and weak ferromagnetic(FM) phase.These also exhibited the existence of competition mechanism below characteristic temperature TN1=141.0 K and the magnetic order of Ho ion below 7.5 K.The current complex magnetization might be attributed to the interaction between paramagnetic Ho3+ moments and canted Cr3+ moments.展开更多
The chrome spinel(chromite)in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites.Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex(MOC...The chrome spinel(chromite)in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites.Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex(MOC),Yangtze Craton.Due to the metamorphism and intense deformation,most chromite grains in the MOC peridotites show typical chemical zoning(core-rim texture).The values of major and trace elements largely vary from core to rim within chromite grains,indicating that the chromites have undergone strong alteration and element mobility.Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC.The chromites from the MOC peridotites have higher Cr#values and lower Ni and Ga contents with respect to those from Phanero-zoic mantle peridotites,indicating a higher degree of depletion.In-situ major and trace elements(e.g.,Ga)characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures,indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.展开更多
The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ...The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.展开更多
The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal s...The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal supracrustal rock hosted by Neoarchaean Bundeli gneisses.Compositionally zincian chromite shows a range of Cr_(2)O_(3)(39.69 to 51.66 wt%),Al_(2)O_(3)(05.30 wt%to 08.71 wt%),FeO(21.74 wt%to 27.51 wt%),Fe_(2)O_(3)(10.19 wt%to 19.36wt%)with higher ZnO content ranging from 1.73 wt%to 4.08 wt%.Accordingly,their Cr#[Cr/(Cr+Al)]varies in a narrow range from 0.83 to 0.85.Its calculated melt composition supports metamorphic or post-magmatic nature rather than common occurrences such as inclusion in diamonds,meteorites,and association with any sulfide-rich mineralised belt.This reveals that the post-magmatic processes play a vital role in transforming chromite to zincian chromite.The empirical thermometric calculation from chromite,amphibole,and pyroxene support their metamorphic origin and formed during low-P and high-T amphibolite grade facies of metamorphism(~700℃).The Neoarchaean granitic magmatism has a significant role in generating and transferring the heat during contact metamorphism with hydration of ultramafic xenoliths and further alteration,i.e.,serpentinisation.The olivine is a major repository for Mn,Zn,and Co in peridotite/ultramafic;these elements get mobilised during the metamorphism and serpentinisation.This is a possible reason for the mobilisation of zinc and incorporation in the chromite within altered ultramafic.As a result,chromiterich ultramafic xenolith subjected to metamorphic process gets enrichment of Zn and Fe due to elemental exchange.It converts common chromite into zincian chromite,as reported in altered ultramafics elsewhere.展开更多
Mineralogical characterization and liberation of valuable minerals are primary concerns in rnineml processing industries. The pre- sent investigation focuses on quantitative mineralogy, elemental deportment, and locki...Mineralogical characterization and liberation of valuable minerals are primary concerns in rnineml processing industries. The pre- sent investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN~, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spec- trometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr203 and 39.19wt% Fe203, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 ~tm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr203 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.展开更多
Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mine...Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and, in order of increasing degree of alteration, these are: zonem is rich in serpentine minerals; zonen is rich in talc and carbonates; and zone_Ⅰ is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith, although some oxides show linear correlations with MgO. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zone_Ⅰ and zone_Ⅱ and is up to 0.91 g/t in one sample from zonei. We show that CO_2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains, indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.展开更多
To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were stud...To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.展开更多
A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral ...A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral is cubic, space group P213. The irregular crystals range from 15 to 50 μm in diameter and form an intergrowth with luobusaite. Naquite is steel grey in color, opaque, with a metallic lustre and gives a grayish-black streak. The mineral is brittle, has a conchoidal fracture and no apparent cleavage. The estimated Mohs hardness is 6.5, and the calculated density is 6.128 g/cm3. Unit-cell parameters are a 4.486 (4) A, V 90.28 (6)A^3, Z=4. The five strongest powder diffraction lines [d inA(hkl) (I/I0)] are: 3.1742 (110) (40), 2.5917(111) (43), 2.0076 (210) (100), 1.8307 (211) (65), and 1.1990 (321) (36). Originally called 'fersilicite', the species and new name have now been approved by the CNMNC (IMA 2010-010).展开更多
Voluminous platinum-group mineral (PGM) inclusions including erlichmanite (Os,Ru)S2, laurite (Ru,Os)S2, and irarsite (Ir, Os,Ru,Rh)AsS, as well as native osmium Os(Ir) and inclusions of base metal sulphides ...Voluminous platinum-group mineral (PGM) inclusions including erlichmanite (Os,Ru)S2, laurite (Ru,Os)S2, and irarsite (Ir, Os,Ru,Rh)AsS, as well as native osmium Os(Ir) and inclusions of base metal sulphides (BMS), including millerite (NiS), heazlewoodite (NiaS2), covellite (CuS) and digenite (Cu3S2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 ~m in size and vary in shape from euhedral to anhedral. They occur either as single or composite (biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides (such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of fS2 and fO2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low fS2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and fS2 increased. The abundance of primary BMS in the chromitites suggests that fS2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.展开更多
Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag comp...Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial was...Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.展开更多
Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-...Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.展开更多
The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric...The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.展开更多
The interconnect materials La0.7Ca0.3Cr1-xZnxO3-δ(x=0,0.01,0.03,0.05,0.07) were prepared by a microwave assisted sol-gel auto-ignition process.The crystalline structures of the samples were characterized by X-ray dif...The interconnect materials La0.7Ca0.3Cr1-xZnxO3-δ(x=0,0.01,0.03,0.05,0.07) were prepared by a microwave assisted sol-gel auto-ignition process.The crystalline structures of the samples were characterized by X-ray diffraction(XRD) and the lattice parameters were evaluated with Rietveld method.For Ca-Zn co-doped LaCrO3 with x=0.03,the sintering activity was improved,and the relative density came up to 96.5% for the sample sintered at 1300 oC for 10 h.The electrical conductivity of the samples was increased fr...展开更多
The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, b...The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg–Al, Mg–Fe, and Mg–Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid–dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg–Al spinel and Mg–Fe spinel because Mg^(2+), Al^(3+), and Fe^(3+) in spinels cannot be oxidized by Cr^(6+). However, in the case of the Mg–Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid–dichromic acid solution was illustrated on the basis of the findings of this study.展开更多
文摘Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.
基金Project supported bythe National Natural Science Foundation of China (50362001)
文摘Phase transition of LaCrO3 and doped-LaCrO3 was studied by DSC, TG and XRD, and thermal expansion during the transition was analyzed. It is found that phase transition of LaCrO3 begins at about 240℃ and ends at about 265 ℃. Temperatures of phase transition rise obviously with increasing Ca^2+ content. The transition of LaCrO3 and Ca-doped LaCrO3 from orthorhombic to rhombohedral is accompanied with endothermic reaction. No obvious change occurs in mass, but remarkable shrinkage occurs during phase transition.
基金supported by National Natural Science Foundation Project(grant number 41302051)Shaanxi Province Science Technology Research Development Plan Project(grant number 2014JM2-4037)National Sci-Tech Support Plan Project(grant number 2011BAB06B05-02)
文摘The Kuda ophiolite belongs to the early Paleozoic ophiolite belt in Western Kunlun Mountains and is composed of metamorphic peridotites,cumulate peridotites,mafic volcanic rocks and quartzites(Li et al.,
文摘The Polar Urals region of northern Russia is well known for large chromium (Cr)-bearing massifs with major chromite orebodies, including the Centralnoye I deposit in the Ray-Iz ultramafic massif of the Ural ophiolite belt. New data on platinum (Pt)-group elements (PGE), geochemistry and mineralogy of the host dunite shows that the deposit has anomalous iridium (Ir) values. These values indicate the predominance of ruthenium--osmium--iridium (Ru--Os--Ir)-bearing phases among the platinum-group mineral (PGM) assemblage that is typical of mantle-hosted chromite ores. Low Pt values in chromites and increased Pt values in host dunites might reflect the presence of cumulus PGM grains. The most abundant PGM found in the chromite is erlichmanite (up to 15 μm). Less common are cuproiridsite (up to 5 μm), irarsite (up to 4--5 μm), and laurite (up to 4 μm). The predominant sulfide is heazlewoodite, in intergrowth with Ni--Fe alloys, sporadically with pentlandite, and rarely with pure nickel. Based on the average PGE values and esti- mated Cr-ore resources, the Centralnoye I deposit can be considered as an important resource of PGE.
基金Project supported by the National Natural Science Foundation of China (10774097,10875107)the Science & Technology Committee of Shanghai Municipality (08dj1400202)+1 种基金the Natural Science Foundation of Henan Province (092300410138,102300410108)the Doctoral Innovation Fund of Zhengzhou University of Light Industry (2010BSJJ027)
文摘The temperature dependence of the magnetic properties was systemically studied by dc/ac magnetization and specific heat measurement for heavy rare earth HoCrO3 chromites.The results revealed the existence of complex phase coexistence and competitive magnetic behavior in HoCrO3 chromites.It was found that,in the region of higher temperature above 141.0 K,HoCrO3 behaved as a typical Curie-Weiss paramagnetic(PM).And in the region of low temperature,a novel magnetization behavior was observed with negative magnetization(diamagnetism-like) characteristics under an external field of 100 Oe and M-T curves exhibited two symmetrical branches for field cooling(FC) and zero field cooling(ZFC) modes.This behavior indicated the coexistence of canted antiferromagnetic(CAFM) and weak ferromagnetic(FM) phase.These also exhibited the existence of competition mechanism below characteristic temperature TN1=141.0 K and the magnetic order of Ho ion below 7.5 K.The current complex magnetization might be attributed to the interaction between paramagnetic Ho3+ moments and canted Cr3+ moments.
基金This study was supported by the National Natural Science Foundation of China(Nos.41802240,41902036)the Fundamental Research Funds of the Central Universities granted by China University of Geosciences(Wuhan)(No.007-G1323541792)to Hao DengThis research was also supported by an opening fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Wuhan)(No.GRMR201607).
文摘The chrome spinel(chromite)in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites.Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex(MOC),Yangtze Craton.Due to the metamorphism and intense deformation,most chromite grains in the MOC peridotites show typical chemical zoning(core-rim texture).The values of major and trace elements largely vary from core to rim within chromite grains,indicating that the chromites have undergone strong alteration and element mobility.Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC.The chromites from the MOC peridotites have higher Cr#values and lower Ni and Ga contents with respect to those from Phanero-zoic mantle peridotites,indicating a higher degree of depletion.In-situ major and trace elements(e.g.,Ga)characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures,indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.
文摘The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.
基金Geological Survey of India,Ministry of Mines,Government of India for funding the opportunity to work in this projects。
文摘The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area,Bastar craton,Central India.The zincian chromite is in the ultramafic xenoliths of Bengpal supracrustal rock hosted by Neoarchaean Bundeli gneisses.Compositionally zincian chromite shows a range of Cr_(2)O_(3)(39.69 to 51.66 wt%),Al_(2)O_(3)(05.30 wt%to 08.71 wt%),FeO(21.74 wt%to 27.51 wt%),Fe_(2)O_(3)(10.19 wt%to 19.36wt%)with higher ZnO content ranging from 1.73 wt%to 4.08 wt%.Accordingly,their Cr#[Cr/(Cr+Al)]varies in a narrow range from 0.83 to 0.85.Its calculated melt composition supports metamorphic or post-magmatic nature rather than common occurrences such as inclusion in diamonds,meteorites,and association with any sulfide-rich mineralised belt.This reveals that the post-magmatic processes play a vital role in transforming chromite to zincian chromite.The empirical thermometric calculation from chromite,amphibole,and pyroxene support their metamorphic origin and formed during low-P and high-T amphibolite grade facies of metamorphism(~700℃).The Neoarchaean granitic magmatism has a significant role in generating and transferring the heat during contact metamorphism with hydration of ultramafic xenoliths and further alteration,i.e.,serpentinisation.The olivine is a major repository for Mn,Zn,and Co in peridotite/ultramafic;these elements get mobilised during the metamorphism and serpentinisation.This is a possible reason for the mobilisation of zinc and incorporation in the chromite within altered ultramafic.As a result,chromiterich ultramafic xenolith subjected to metamorphic process gets enrichment of Zn and Fe due to elemental exchange.It converts common chromite into zincian chromite,as reported in altered ultramafics elsewhere.
文摘Mineralogical characterization and liberation of valuable minerals are primary concerns in rnineml processing industries. The pre- sent investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN~, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spec- trometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr203 and 39.19wt% Fe203, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 ~tm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr203 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.
基金funded by National Natural Science Foundation of China (Grant No.40930313)the China Geological Survey (Grants No.12120114061801+1 种基金 No.12120114057701 and No.12120114061501)
文摘Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and, in order of increasing degree of alteration, these are: zonem is rich in serpentine minerals; zonen is rich in talc and carbonates; and zone_Ⅰ is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith, although some oxides show linear correlations with MgO. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zone_Ⅰ and zone_Ⅱ and is up to 0.91 g/t in one sample from zonei. We show that CO_2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains, indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.
基金Project(2009FJ1009) supported by the Major Science and Technology Program of Hunan Province,China
文摘To explicate the thermodynamics of the chromite ore lime-free roasting process, the thermodynamics of reactions involved in this process was calculated and the phrases of sinter with different roasting times were studied. The thermodynamics calculation shows that all the standard Gibbs free energy changes of the reactions to form Na2CrO4, Na2O-Fe2O3, Na2O·Al2O3 and Na2O3 SiO2 via chromite ore and Na2CO3 are negative, and the standard Gibbs free energy changes of the reactions between MgO, Fe2O3 and SiO2 released from chromite spinel to form MgO-Fe2O3 and MgO·SiO2 are also negative at the oxidative roasting temperatures (1 173 1 473 K). The phrase analysis of the sinter in lime-free roasting process shows that Na2O·Fe2O3, Na2O·Al2O3 and Na2O·SiO2 can be formed in the first 20 min, but they decrease in contents and finally disappear with the increase of roasting time. The final phase compositions of the sinter are Na2CrO4, MgO·Fe2O3, MgO·SiO2 and MgO. The results indicate that Na2CrO4 can be formed easily via the reaction ofNa2CO3 with chromite ore. Na2O·Fe2O3, Na2O-Al2O3 and Na2O·SiO2 can be formed as intermediate compounds in the roasting process and they can further react with chromite ore to form Na2CrO4. MgO released from chromite ore may react with iron oxides and silicon oxide to form stable compounds of MgO·Fe2O3 and MgO·SiO2, respectively.
基金supported financially by the National Natural Science Foundation of China (Grant No. 40472025, 40620120098,40872043)
文摘A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral is cubic, space group P213. The irregular crystals range from 15 to 50 μm in diameter and form an intergrowth with luobusaite. Naquite is steel grey in color, opaque, with a metallic lustre and gives a grayish-black streak. The mineral is brittle, has a conchoidal fracture and no apparent cleavage. The estimated Mohs hardness is 6.5, and the calculated density is 6.128 g/cm3. Unit-cell parameters are a 4.486 (4) A, V 90.28 (6)A^3, Z=4. The five strongest powder diffraction lines [d inA(hkl) (I/I0)] are: 3.1742 (110) (40), 2.5917(111) (43), 2.0076 (210) (100), 1.8307 (211) (65), and 1.1990 (321) (36). Originally called 'fersilicite', the species and new name have now been approved by the CNMNC (IMA 2010-010).
基金financially supported by the National Natural Science Foundation of China (Grant No.41262002,40930313,41302052,41502062)National Industry Special Projects (Sino Probe-05-02)+2 种基金China Bureau of Geological Survey Projects (DD20160023-01)IGCP-649Institute of Geology, Chinese Academy of Geological Science (J1526)
文摘Voluminous platinum-group mineral (PGM) inclusions including erlichmanite (Os,Ru)S2, laurite (Ru,Os)S2, and irarsite (Ir, Os,Ru,Rh)AsS, as well as native osmium Os(Ir) and inclusions of base metal sulphides (BMS), including millerite (NiS), heazlewoodite (NiaS2), covellite (CuS) and digenite (Cu3S2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 ~m in size and vary in shape from euhedral to anhedral. They occur either as single or composite (biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides (such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of fS2 and fO2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low fS2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and fS2 increased. The abundance of primary BMS in the chromitites suggests that fS2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.
基金funded by NRCan under the Rare Earth Elements and Chromite R&D Program
文摘Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.
基金Project(2009FJ1009) supported by Major Program of Hunan Provincial Science and Technology, ChinaProject(2005CB6237) supported by the National Basic Research Program of China
文摘Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.
基金Project (2003AA305820) supported by the National High-Tech Research and Development Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University, China
文摘Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.
基金financially supported by the National Natural Science Foundation of China (No. 51374059)
文摘The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.
基金supported by the Key Fund of Natural Science for Education Department of Anhui Province,China (KJ2008A150)
文摘The interconnect materials La0.7Ca0.3Cr1-xZnxO3-δ(x=0,0.01,0.03,0.05,0.07) were prepared by a microwave assisted sol-gel auto-ignition process.The crystalline structures of the samples were characterized by X-ray diffraction(XRD) and the lattice parameters were evaluated with Rietveld method.For Ca-Zn co-doped LaCrO3 with x=0.03,the sintering activity was improved,and the relative density came up to 96.5% for the sample sintered at 1300 oC for 10 h.The electrical conductivity of the samples was increased fr...
基金financially supported by the National Key R&D Program of China (No.2017YFC0805100)the National Natural Science Foundation of China (Nos.51704068 and 51374059)+1 种基金the China Postdoctoral Science Foundation (No.2017M610184)the Postdoctoral Foundation of Northeastern University (No.20170305)
文摘The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg–Al, Mg–Fe, and Mg–Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid–dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg–Al spinel and Mg–Fe spinel because Mg^(2+), Al^(3+), and Fe^(3+) in spinels cannot be oxidized by Cr^(6+). However, in the case of the Mg–Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid–dichromic acid solution was illustrated on the basis of the findings of this study.