Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit...Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.展开更多
In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing ...In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.展开更多
The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered ...The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.展开更多
The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this mater...The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.展开更多
The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a low...The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a lower cost. It can be easily formed into roofing panels by ordinary processes. Moreover,the thermal strain of it is less than SUS 316L because of its lower thermal expansion coefficient, and its reflectivity is lower due to the dull-finish treatment. All of these features make it capable of being used as architectural roofing materials in coastal regions.展开更多
The influence of rare earth (RE) content on mechanical properties and abrasion resistance of low chromium semi steel was studied by means of metallographic examination, scanning electron microscopic examination and m...The influence of rare earth (RE) content on mechanical properties and abrasion resistance of low chromium semi steel was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experiment results show that RE can improve the comprehensive properties, especially in combination with proper heat treatment. The optimum properties of low chromium semi steel modified by RE of 0 25 % could be obtained by normalization at 950 ℃ for 3 h. The main reason is the change in morphology and distribution of eutectic carbide and the precipitation of granular carbides.展开更多
Effects of varied levels of cerium(28×10-6,65×10^(-6) and 150×10^(-6))on inclusions in a high-carbon chromium bearing steel at different stages(before adding cerium,after adding cerium for 1,5,10 min an...Effects of varied levels of cerium(28×10-6,65×10^(-6) and 150×10^(-6))on inclusions in a high-carbon chromium bearing steel at different stages(before adding cerium,after adding cerium for 1,5,10 min and ingot)were studied using laboratory experiments.An automatic scanning electron microscope system with energy-dispersive spectroscopy was used to analyze the amount,composition,size and morphology of inclusions in the steel at different stages.When the cerium content in the molten steel increased from 0 to 150×10^(-6),the evolution sequence of inclusions was as follows:Al_(2)O_(3)→CeAl11O18→CeAlO_(3)→Ce_(2)O_(2)S.After 28×10^(-6) cerium was added,Al_(2)O_(3) inclusions were modified into CeAl_(11)O_(18) inclusions in the molten steel and then were further transformed into Al2O3 and CeAlO3 inclusions in the solid steel during cooling.With the addition of 65×10^(-6) cerium,inclusions in the molten steel were modified into CeAlO_(3) and a small number of Ce2O2S inclusions.When the addition amount of cerium increased to 150×10^(-6),inclusions were transformed to Ce_(2)O_(2)S.The size of inclusions in the molten steel decreased obviously with cerium addition.On the other hand,the size of inclusions increased during the cooling process in solid steels of No.1 steel(with 28×10^(-6) cerium)and No.2 steel(with 65×10^(-6) cerium).During the cooling process,unmodified MnS inclusions were precipitated in the solid steel of No.1 steel and wrapped outside the Al2O3 and CeAlO_(3) inclusions to form large complex inclusions.During the cooling process of No.2 steel,the inclusion size of CeAlO_(3) increased due to the collision and polymerization.In the No.3 steel(with 150×10^(-6) cerium),the average size of inclusions decreased rapidly and remained at a lower size during the cooling process,which was beneficial to improving the fatigue life of the steel.展开更多
The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron ...The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness, impact toughness, tensile and pin-on-disc abrasion tests. The results show that as cast microstructures of boron-free high chromium steel consist of martensite and a few (Cr, Fe)_7C_3 carbide, and the macro-hardness of boron-free high chromium steel is 55-57 HRC. After 0.5 mass% B was added into high chromium cast steel, as-cast structure transforms into eutectic (Fe, Cr)2B, (Cr, Fe)7 (C, B)a and martensite, and the macro-hardness reaches 58-60 HRC. High temperature quenching leads to the disconnection and isolated distribution of boride, and there are many (Cr,Fe)_23 (C,B)_6 precipitated phases in the quenching structure. Quenching from 1050 ℃, high chromium steel obtained the highest hardness, and the hardness of high chromium cast steel containing boron is higher than that of boron-free high chromium steel. The change of quenching temperature has no obvious effect on impact toughness of high chromium steel, and the increase of quenching temperature leads to tensile strength having an increasing tendency. At the same quenching temperature, the wear resistance of high chromium cast steel containing boron is more excellent than that of boron-free high chromium steel. High chromium cast steel guide containing boron has good performance while using in steel bar mill.展开更多
As species we humans generate excessive amounts of waste and hence for sustainability we should explore innovative ways to recover them.The primary objective of this study is to demonstrate an efficient and optimum wa...As species we humans generate excessive amounts of waste and hence for sustainability we should explore innovative ways to recover them.The primary objective of this study is to demonstrate an efficient and optimum way to recover chromium and iron from chromite ore processing residues(COPR)for the production of chrome steel and stainless steel.In Hudson County,New Jersey,there are more than two million tons of leftover COPR.Part of COPR was used as fill materials for construction sites,which spread the problem to a larger area.With high solubility along with their toxicity leached chromate from COPR is threatening the environment as well as human health.In this research,COPR was thermally treated to recover iron with chromium by applying techniques used in steel manufacturing.An extensive experimental program was performed using a Thermo-Gravimetric Analyzer(TGA)and bench scale tests to thermally treat the processed chromium contaminated soils with carbon and sand at varying temperatures and under reducing environment.The optimum chemical composition of COPR and additives to be used in the melts were evaluated based upon the thermodynamic properties of the mixture to ensure good phase separation,least amounts of iron and chromium oxides in the slag and minimum variability of final product(steel or iron with chromium).The impact of other oxides on the steel making process was evaluated to minimize the adverse impact on the process.The research demonstrated the feasibility of recovering a valuable construction material(chrome steel)from a waste(COPR).展开更多
Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microst...Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microstructural observation of both 9Cr18 steel and X90N steel, it was found that nitrogen addition could effectively reduce the amount and size of coarse carbides and also refine the original austenite grain size. Due to addition of nitrogen, more austenite phase was found in X90N steel than in 9Cr18 steel. The retained austenite of X90N steel after quenching at 1050℃ could be reduced from about 60% to about 7 9% by cold treatment at -73℃ and subsequent tempering, and thus finally increased the hardness up to 60 HRC after low temperature tempering and to 63 HRC after high temperature tempering. Furthermore, both the wear and corrosion resistance of X90N steel were found much more superior than those of 9Cr18 steel, which was attributed to the addition of nitrogen. It was proposed at last that nitrogen alloying into the high chromium bearing steel was a promising way not only to refine the size of both carbides and austenite, but also to achieve high hardness, high wear property and improved corrosion resistance of the stainless bearing steel.展开更多
Two cold rolled hot-dip galvanizing dual phase(DP) 450 steels with different amounts of chromium were designed and the effects of the chromium concentration and galvanizing processes on the microstructure and mechan...Two cold rolled hot-dip galvanizing dual phase(DP) 450 steels with different amounts of chromium were designed and the effects of the chromium concentration and galvanizing processes on the microstructure and mechanical properties were also investigated. The results show that the experimental steels exhibit typical dual phase microstructure character. However, the ferrite phase of steel with higher chromium is more regular and its boundaries are clearer. Meanwhile, martensite austenite(MA) island in steel No. 2 is diffused and no longer distributes along the grain boundary as net or chain shape. More MA islands enriched with Cr element can be found in the ferrite grains, and the increment of Cr element improves the stablity of the austenite so that the austenite has been reserved in MA islands. In addition, the experimental steel with higher chromium exhibits better elongation, lower yield ratio and better formability. The mean hole expanding ratio of steels No. 1 and No. 2 is 161.70% and 192.70%, respectively.展开更多
Strength of welded joints of high chromium steels is one of the important concerns for fabricators and operators of ultra supercritical thermal power plants. A number of creep as well as creep-fatigue tests with tensi...Strength of welded joints of high chromium steels is one of the important concerns for fabricators and operators of ultra supercritical thermal power plants. A number of creep as well as creep-fatigue tests with tensile hold have been carried out on the welded joints of two types of high chromium steels widely used in Japan, i.e. Grade 91 and 122 steels. It was found that failure occurred in fine grain heat-affected zone in all the creep-fatigue tests, even at a relatively low temperature and fairly short time where failure occurred in plain base metal region in simple creep testing. Four procedures were used to predict failure lives and their results were compared with the test results. A newly proposed energy-based approach gave the best estimation of failure life, without respect of the material and temperature.展开更多
Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was s...Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was studied. The results indicated that the corrosion resistance of S450 EW weathering steel is closely related to chromium content. The addition of chromium significantly inhibited the weathering steel corrosion. The corrosion rate of experimental steel after 96 h immersion was 1.101 g·m-2·h-1. The rust of S450 EW weathering steel was mainly constituted of Fe OOH and Fe3O4 phase, and the elevation of chromium content promoted the formation of α-Fe OOH. The fine precipitates of the two phases contributed to the formation of dense dust layer of test steel. Furthermore, the increase of chromium is beneficial for the cure of original defects and cracks of the rust layer via the enrichment of chromium. The corrosion potential and the resistance of corrosion process were thus increased, protecting the experimental steel from further corrosion. A S450 EW steel with corrosion resistance more than 1.5 times of Q450NQR1 steel was prepared.展开更多
The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to...The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to be sensitive to solid-state phase transformations in the critical temperature range 600-1,000 ℃ and different secondary phases may form,depending on composition and microstructure.The performed thermodynamic simulations revealed the proneness to the precipitation of such phases also have been done in lean DSS,but only information on the equilibrium microstructures were achieved.Therefore,the materials were aged at various times,in order to verify the simulations and determine the precipitation kinetics.The occurred structural modifications were observed and quantified by scanning electron microscope and X-ray diffraction measurements,determining phase type,composition and volumetric fraction.At 800 ℃,grade 2101 was found to be only affected by Cr_2N nitrides precipitation,whereas a significant amount of σ-phase was found to form in LDX 2404 for treatment longer than 1 h,almost totally replacing ferrite after 50 h.Up to now,the intermetallic σ-phase has been observed only in the high alloyed DSS,and the unexpected precipitation in grade 2404 highlighted that the increased content of molybdenum in this steel might be considered as determinant for the formation.展开更多
基金the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.
基金Item Sponsored by Guiding Programme of Science and Technology Research of Hebei of China(94122123)
文摘In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.
基金financially supported by the National Natural Science Foundation of China (No. 51474021)the Fundamental Research Funds for the Central Universities of China (No. FRF-SD-12-009A)
文摘The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant.
文摘The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.
文摘The dull-finish ferritic stainless steel (FSS) sheet B445R for architectural roofing has been developed by Baosteel. This steel product exhibits excellent corrosion resistance superior to that of SUS 316L with a lower cost. It can be easily formed into roofing panels by ordinary processes. Moreover,the thermal strain of it is less than SUS 316L because of its lower thermal expansion coefficient, and its reflectivity is lower due to the dull-finish treatment. All of these features make it capable of being used as architectural roofing materials in coastal regions.
基金Item Sponsored by National Natural Science Foundation of China(59871025)
文摘The influence of rare earth (RE) content on mechanical properties and abrasion resistance of low chromium semi steel was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experiment results show that RE can improve the comprehensive properties, especially in combination with proper heat treatment. The optimum properties of low chromium semi steel modified by RE of 0 25 % could be obtained by normalization at 950 ℃ for 3 h. The main reason is the change in morphology and distribution of eutectic carbide and the precipitation of granular carbides.
基金support from the Natural Science Foundation of Hebei Province(Grant No.E2021203062)S&T Program of Hebei(Grant No.20311006D)the High Steel Center(HSC)at North China University of Technology,Yanshan University and University of Science and Technology Beijing.
文摘Effects of varied levels of cerium(28×10-6,65×10^(-6) and 150×10^(-6))on inclusions in a high-carbon chromium bearing steel at different stages(before adding cerium,after adding cerium for 1,5,10 min and ingot)were studied using laboratory experiments.An automatic scanning electron microscope system with energy-dispersive spectroscopy was used to analyze the amount,composition,size and morphology of inclusions in the steel at different stages.When the cerium content in the molten steel increased from 0 to 150×10^(-6),the evolution sequence of inclusions was as follows:Al_(2)O_(3)→CeAl11O18→CeAlO_(3)→Ce_(2)O_(2)S.After 28×10^(-6) cerium was added,Al_(2)O_(3) inclusions were modified into CeAl_(11)O_(18) inclusions in the molten steel and then were further transformed into Al2O3 and CeAlO3 inclusions in the solid steel during cooling.With the addition of 65×10^(-6) cerium,inclusions in the molten steel were modified into CeAlO_(3) and a small number of Ce2O2S inclusions.When the addition amount of cerium increased to 150×10^(-6),inclusions were transformed to Ce_(2)O_(2)S.The size of inclusions in the molten steel decreased obviously with cerium addition.On the other hand,the size of inclusions increased during the cooling process in solid steels of No.1 steel(with 28×10^(-6) cerium)and No.2 steel(with 65×10^(-6) cerium).During the cooling process,unmodified MnS inclusions were precipitated in the solid steel of No.1 steel and wrapped outside the Al2O3 and CeAlO_(3) inclusions to form large complex inclusions.During the cooling process of No.2 steel,the inclusion size of CeAlO_(3) increased due to the collision and polymerization.In the No.3 steel(with 150×10^(-6) cerium),the average size of inclusions decreased rapidly and remained at a lower size during the cooling process,which was beneficial to improving the fatigue life of the steel.
基金Item Sponsored by National Natural Science Foundation of China(51274016)Natural Science Foundation of Beijing of China(2142009)Plan Item of Beijing Education Committee of China(KM201310005003)
文摘The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness, impact toughness, tensile and pin-on-disc abrasion tests. The results show that as cast microstructures of boron-free high chromium steel consist of martensite and a few (Cr, Fe)_7C_3 carbide, and the macro-hardness of boron-free high chromium steel is 55-57 HRC. After 0.5 mass% B was added into high chromium cast steel, as-cast structure transforms into eutectic (Fe, Cr)2B, (Cr, Fe)7 (C, B)a and martensite, and the macro-hardness reaches 58-60 HRC. High temperature quenching leads to the disconnection and isolated distribution of boride, and there are many (Cr,Fe)_23 (C,B)_6 precipitated phases in the quenching structure. Quenching from 1050 ℃, high chromium steel obtained the highest hardness, and the hardness of high chromium cast steel containing boron is higher than that of boron-free high chromium steel. The change of quenching temperature has no obvious effect on impact toughness of high chromium steel, and the increase of quenching temperature leads to tensile strength having an increasing tendency. At the same quenching temperature, the wear resistance of high chromium cast steel containing boron is more excellent than that of boron-free high chromium steel. High chromium cast steel guide containing boron has good performance while using in steel bar mill.
基金The work described in this study was supported by a research contract from the New Jersey Department of Environmental Protection.
文摘As species we humans generate excessive amounts of waste and hence for sustainability we should explore innovative ways to recover them.The primary objective of this study is to demonstrate an efficient and optimum way to recover chromium and iron from chromite ore processing residues(COPR)for the production of chrome steel and stainless steel.In Hudson County,New Jersey,there are more than two million tons of leftover COPR.Part of COPR was used as fill materials for construction sites,which spread the problem to a larger area.With high solubility along with their toxicity leached chromate from COPR is threatening the environment as well as human health.In this research,COPR was thermally treated to recover iron with chromium by applying techniques used in steel manufacturing.An extensive experimental program was performed using a Thermo-Gravimetric Analyzer(TGA)and bench scale tests to thermally treat the processed chromium contaminated soils with carbon and sand at varying temperatures and under reducing environment.The optimum chemical composition of COPR and additives to be used in the melts were evaluated based upon the thermodynamic properties of the mixture to ensure good phase separation,least amounts of iron and chromium oxides in the slag and minimum variability of final product(steel or iron with chromium).The impact of other oxides on the steel making process was evaluated to minimize the adverse impact on the process.The research demonstrated the feasibility of recovering a valuable construction material(chrome steel)from a waste(COPR).
基金supported by National Natural Science Foundation of China (51371057)International Project Collaboration between CISRI (P.R.China) and COMTES FHT a.s (Czech Republic)
文摘Microstructure and property of bearing steel with and without nitrogen addition were investigated by microstructural observation and hardness measurement after different heat treatment processing. Based on the microstructural observation of both 9Cr18 steel and X90N steel, it was found that nitrogen addition could effectively reduce the amount and size of coarse carbides and also refine the original austenite grain size. Due to addition of nitrogen, more austenite phase was found in X90N steel than in 9Cr18 steel. The retained austenite of X90N steel after quenching at 1050℃ could be reduced from about 60% to about 7 9% by cold treatment at -73℃ and subsequent tempering, and thus finally increased the hardness up to 60 HRC after low temperature tempering and to 63 HRC after high temperature tempering. Furthermore, both the wear and corrosion resistance of X90N steel were found much more superior than those of 9Cr18 steel, which was attributed to the addition of nitrogen. It was proposed at last that nitrogen alloying into the high chromium bearing steel was a promising way not only to refine the size of both carbides and austenite, but also to achieve high hardness, high wear property and improved corrosion resistance of the stainless bearing steel.
文摘Two cold rolled hot-dip galvanizing dual phase(DP) 450 steels with different amounts of chromium were designed and the effects of the chromium concentration and galvanizing processes on the microstructure and mechanical properties were also investigated. The results show that the experimental steels exhibit typical dual phase microstructure character. However, the ferrite phase of steel with higher chromium is more regular and its boundaries are clearer. Meanwhile, martensite austenite(MA) island in steel No. 2 is diffused and no longer distributes along the grain boundary as net or chain shape. More MA islands enriched with Cr element can be found in the ferrite grains, and the increment of Cr element improves the stablity of the austenite so that the austenite has been reserved in MA islands. In addition, the experimental steel with higher chromium exhibits better elongation, lower yield ratio and better formability. The mean hole expanding ratio of steels No. 1 and No. 2 is 161.70% and 192.70%, respectively.
文摘Strength of welded joints of high chromium steels is one of the important concerns for fabricators and operators of ultra supercritical thermal power plants. A number of creep as well as creep-fatigue tests with tensile hold have been carried out on the welded joints of two types of high chromium steels widely used in Japan, i.e. Grade 91 and 122 steels. It was found that failure occurred in fine grain heat-affected zone in all the creep-fatigue tests, even at a relatively low temperature and fairly short time where failure occurred in plain base metal region in simple creep testing. Four procedures were used to predict failure lives and their results were compared with the test results. A newly proposed energy-based approach gave the best estimation of failure life, without respect of the material and temperature.
基金Item Sponsored by National Natural Science Foundation of China(51104039)Fundamental Research Funds for the National Key Basic Research Program of China(2012CB626812)
文摘Weathering steel is widely used in various fields due to its excellent mechanical properties and high corrosion resistance. The effect of chromium content on the S450 EW weathering steel in cyclic immersion test was studied. The results indicated that the corrosion resistance of S450 EW weathering steel is closely related to chromium content. The addition of chromium significantly inhibited the weathering steel corrosion. The corrosion rate of experimental steel after 96 h immersion was 1.101 g·m-2·h-1. The rust of S450 EW weathering steel was mainly constituted of Fe OOH and Fe3O4 phase, and the elevation of chromium content promoted the formation of α-Fe OOH. The fine precipitates of the two phases contributed to the formation of dense dust layer of test steel. Furthermore, the increase of chromium is beneficial for the cure of original defects and cracks of the rust layer via the enrichment of chromium. The corrosion potential and the resistance of corrosion process were thus increased, protecting the experimental steel from further corrosion. A S450 EW steel with corrosion resistance more than 1.5 times of Q450NQR1 steel was prepared.
文摘The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to be sensitive to solid-state phase transformations in the critical temperature range 600-1,000 ℃ and different secondary phases may form,depending on composition and microstructure.The performed thermodynamic simulations revealed the proneness to the precipitation of such phases also have been done in lean DSS,but only information on the equilibrium microstructures were achieved.Therefore,the materials were aged at various times,in order to verify the simulations and determine the precipitation kinetics.The occurred structural modifications were observed and quantified by scanning electron microscope and X-ray diffraction measurements,determining phase type,composition and volumetric fraction.At 800 ℃,grade 2101 was found to be only affected by Cr_2N nitrides precipitation,whereas a significant amount of σ-phase was found to form in LDX 2404 for treatment longer than 1 h,almost totally replacing ferrite after 50 h.Up to now,the intermetallic σ-phase has been observed only in the high alloyed DSS,and the unexpected precipitation in grade 2404 highlighted that the increased content of molybdenum in this steel might be considered as determinant for the formation.