Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is ...Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate...This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
We explored Q-switching mechanism for the newly proposed Tm/Ho composite laser via developing a hybrid resonator for separating the intra-cavity Tm laser modulated by the saturable absorber(SA).With a Cr:ZnSe SA,succe...We explored Q-switching mechanism for the newly proposed Tm/Ho composite laser via developing a hybrid resonator for separating the intra-cavity Tm laser modulated by the saturable absorber(SA).With a Cr:ZnSe SA,successful passively Q-switching process with the maximum average output power of 474 mW and the shortest pulse width of 145 ns were obtained at the pulse repetition frequency of 7.14 kHz,where dual wavelength oscillation in both 2090 nm and 2097 nm was observed.This work provides an effective way for a direct laser diode(LD)pumped Q-switched Ho laser,which is compact and accessible.Furthermore,the current SA could be replaced by the 2D materials with broadband saturable absorption such as topological insulators or transition-metal dichalcogenides for seeking novel PQS lasers.展开更多
Nb and Ti-13 Nb powders were used for improving the surface of Ti6Al4 V alloy.The deposition of the powders was carried out at various laser powers.The scanning electron microscopy(SEM)-EDS and optical microscopy we...Nb and Ti-13 Nb powders were used for improving the surface of Ti6Al4 V alloy.The deposition of the powders was carried out at various laser powers.The scanning electron microscopy(SEM)-EDS and optical microscopy were used for characterization.X-ray diffractometer(XRD) was used for analyzing the elemental composition and phase constituents.The hardness,wear and corrosion properties were achieved.The corrosion and the wear behaviours of the deposited layers were studied in a Hanks solution(simulated body fluid,SBF).The microstructures of Nb coatings reveal the presence of orthorhombic,dendritic α″ and metastable β-Nb phases which produce uneven hardness with an average of HV 364.For Ti-13 Nb coatings,martensitic α′ and metastable β-Nb phases with an average hardness of HV 423 were observed.The resistance of wear on dry sliding of Ti-13 Nb coating is attributed to the increase in hardness.Experimental results indicate that deposition of Nb and Ti-13 Nb on Ti6Al4 V grossly reduces the mass fractions of Al and V in all coatings.In SBF,Nb reinforcement produces the best coating that reveals the best wear and corrosion resistances as compared with the substrate.Hence,this coating will perform best for orthopaedic implant material enhancement.展开更多
To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as acti...To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as active diluents,a mixture of modified epoxy acrylate and modified polyester acrylate in a certain proportion was used as an oligomer,2-methyl-1-[4-(methylothyl)benzene]-2-morpholine acetone(907)was used as a free radical photoinitiator,isopropyl thioxanthone(ITX)was used as sensitizer,and bis(dioctyl phosphate acyl)titanate ethyltitanate acrylamide chelate(FD-812)was used as corrosion inhibitor modifier.After UV-curing,the passivation film was characterized by neutral salt spray test,electrochemical testing and other methods.The general performance of the passivation film may meet the requirements of downstream users of hot aluminum-zinc steel plate.The neutral salt spray test,electrochemical testing and microscopic surface morphology analysis of passivation film are in agreement.The introduction of titanate components may effectively promote the photocuring of free radicals.There have been few reports on the titanate coupling which is added to UV-curing coating formula.The titanate coupling agent contains acrylamide groups and terminal amine groups,acrylamide group has oligomer and crosslinking monomer,the terminal tertiary amine groups can provide hydrogen protons,reduce oxygen polymerization,and a phosphating film is formed on the surface of the metal substrate to improve the adhesion and corrosion resistance of the coating.展开更多
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is us...In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.展开更多
A passively mode-locked grown-together composite YVO4/Nd:YV04 crystal laser is demonstrated with a semiconductor saturable absorber mirror by 880-nm laser-diode direct pumping. Under the absorbed pump power of 24.9 W...A passively mode-locked grown-together composite YVO4/Nd:YV04 crystal laser is demonstrated with a semiconductor saturable absorber mirror by 880-nm laser-diode direct pumping. Under the absorbed pump power of 24.9 W, a maximum output power of 10.5 W at the repetition rate of 77 MHz is obtained, corresponding to the optical-optical conversion efficiency of 42.1% and the slope efficiency of 53.4%. The pulse width measured is 33 ps at the output power of 10 W.展开更多
We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pu...We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pulse was higher than 3 m J with duration of 0.9 ns. The proposed system has the ability to choose independently the focus of each beam. Such a laser device can be used for multipoint ignition of an automobile gasoline engine, but could also be of interest for ignition in space propulsion or in turbulent conditions specific to aeronautics.展开更多
基金supported by the National Natural Science Foundation of China(52027802)the Key Research and Development Program of Zhejiang Province(2020C05014,2020C01008,and 2021C01193).
文摘Sodium nitrate passivation has been developed as a new insulation technology for the production of FeSiAl soft magnetic composites (SMCs). In this work, the evolution of coating layers grown at different pH values is investigated involving analyses on their composition and microstructure. An insulation coating obtained using an acidic NaNO_(3) solution is found to contain Fe2O_(3), SiO_(2), Al2O_(3), and AlO(OH). The Fe2O_(3) transforms into Fe3O4 with weakened oxidizability of the NO_(3)– at an elevated pH, whereas an alkaline NaNO_(3) solution leads to the production of Al2O_(3), AlO(OH), and SiO_(2). Such growth is explained from both thermodynamic and kinetic perspectives and is correlated to the soft magnetic properties of the FeSiAl SMCs. Under tuned passivation conditions, optimal performance with an effective permeability of 97.2 and a core loss of 296.4 mW∙cm−3 is achieved at 50 kHz and 100 mT.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金the Research and Development department of EODH SA and has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429).
文摘This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金We are grateful for financial supports from National Key Research and Development Program of China(Grant No.2017YFB1104500)Natural National Science Foundation of China(NSFC)(Grant No.61875200)China Postdoctoral Science Foundation(Grant No.2018M642575)。
文摘We explored Q-switching mechanism for the newly proposed Tm/Ho composite laser via developing a hybrid resonator for separating the intra-cavity Tm laser modulated by the saturable absorber(SA).With a Cr:ZnSe SA,successful passively Q-switching process with the maximum average output power of 474 mW and the shortest pulse width of 145 ns were obtained at the pulse repetition frequency of 7.14 kHz,where dual wavelength oscillation in both 2090 nm and 2097 nm was observed.This work provides an effective way for a direct laser diode(LD)pumped Q-switched Ho laser,which is compact and accessible.Furthermore,the current SA could be replaced by the 2D materials with broadband saturable absorption such as topological insulators or transition-metal dichalcogenides for seeking novel PQS lasers.
基金financially supported by the National Research Foundation of South AfricaThe National Laser Centre,CSIR,Pretoria,South Africa,is appreciated for laser facilitythe support from Tshwane University of Technology,South Africa
文摘Nb and Ti-13 Nb powders were used for improving the surface of Ti6Al4 V alloy.The deposition of the powders was carried out at various laser powers.The scanning electron microscopy(SEM)-EDS and optical microscopy were used for characterization.X-ray diffractometer(XRD) was used for analyzing the elemental composition and phase constituents.The hardness,wear and corrosion properties were achieved.The corrosion and the wear behaviours of the deposited layers were studied in a Hanks solution(simulated body fluid,SBF).The microstructures of Nb coatings reveal the presence of orthorhombic,dendritic α″ and metastable β-Nb phases which produce uneven hardness with an average of HV 364.For Ti-13 Nb coatings,martensitic α′ and metastable β-Nb phases with an average hardness of HV 423 were observed.The resistance of wear on dry sliding of Ti-13 Nb coating is attributed to the increase in hardness.Experimental results indicate that deposition of Nb and Ti-13 Nb on Ti6Al4 V grossly reduces the mass fractions of Al and V in all coatings.In SBF,Nb reinforcement produces the best coating that reveals the best wear and corrosion resistances as compared with the substrate.Hence,this coating will perform best for orthopaedic implant material enhancement.
基金by the National Basic Research Program of China(2009AA03Z529)。
文摘To study the effect of free radical photocurable passivation film modified by titanate coupling agent for hot-plated aluminum-zinc plate,trimethylpropane triacrylate(TMPTA)and 2-phenoxyethyl acrylate were used as active diluents,a mixture of modified epoxy acrylate and modified polyester acrylate in a certain proportion was used as an oligomer,2-methyl-1-[4-(methylothyl)benzene]-2-morpholine acetone(907)was used as a free radical photoinitiator,isopropyl thioxanthone(ITX)was used as sensitizer,and bis(dioctyl phosphate acyl)titanate ethyltitanate acrylamide chelate(FD-812)was used as corrosion inhibitor modifier.After UV-curing,the passivation film was characterized by neutral salt spray test,electrochemical testing and other methods.The general performance of the passivation film may meet the requirements of downstream users of hot aluminum-zinc steel plate.The neutral salt spray test,electrochemical testing and microscopic surface morphology analysis of passivation film are in agreement.The introduction of titanate components may effectively promote the photocuring of free radicals.There have been few reports on the titanate coupling which is added to UV-curing coating formula.The titanate coupling agent contains acrylamide groups and terminal amine groups,acrylamide group has oligomer and crosslinking monomer,the terminal tertiary amine groups can provide hydrogen protons,reduce oxygen polymerization,and a phosphating film is formed on the surface of the metal substrate to improve the adhesion and corrosion resistance of the coating.
文摘In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.
基金supported by the National "973" Project of China under Grant No. 2010CB630706
文摘A passively mode-locked grown-together composite YVO4/Nd:YV04 crystal laser is demonstrated with a semiconductor saturable absorber mirror by 880-nm laser-diode direct pumping. Under the absorbed pump power of 24.9 W, a maximum output power of 10.5 W at the repetition rate of 77 MHz is obtained, corresponding to the optical-optical conversion efficiency of 42.1% and the slope efficiency of 53.4%. The pulse width measured is 33 ps at the output power of 10 W.
基金Autoritatea Nationala pentru Cercetare Stiintifica(ANCS)(PN-II-PT-PCCA-2011-3.2-1040(58/2012),NUCLEU4N/2016)Horizon 2020(691688 LASIG-TWIN)
文摘We report on the design, realization, and output performance of a diode-pumped high-peak-power passively Q-switched Nd:YAG∕Cr^(4+):YAG composite medium monolithic laser with four-beam output. The energy of a laser pulse was higher than 3 m J with duration of 0.9 ns. The proposed system has the ability to choose independently the focus of each beam. Such a laser device can be used for multipoint ignition of an automobile gasoline engine, but could also be of interest for ignition in space propulsion or in turbulent conditions specific to aeronautics.