Aim To investigate whether tluoxetine, a selective serotonin reuptake inhibitor( SSRI) , could amelio- rate cognitive impairments induced by chronic cerebral hypopeffusion in rats and to clarify the underlying mecha...Aim To investigate whether tluoxetine, a selective serotonin reuptake inhibitor( SSRI) , could amelio- rate cognitive impairments induced by chronic cerebral hypopeffusion in rats and to clarify the underlying mecha- nisms of its efficacy. Methods Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg · kg^-1 fluoxetine (intragastric injec- tion, i. g. ) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recog- nition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. West- ern blot was used to quantify the protein levels. Results Fluoxetine treatment significantly improved the cognitive 2VO impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, caused an up-regulation of hyperpolarization-activated cyclic nueleotide-gated channel 2 (HCN2) surface expres- sions in the hippocampal CA1 area and fluoxetine also effectively recovered the up-regulation of HCN2 surface ex- pressions. Conclusion Fluoxetine can ameliorate cognitive impairments induced by chronic cerebral hypopeffusion and a possible mechanism may via down-regulating HCN2 surface expression in the Hippocampal CA1 area.展开更多
Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxyge...Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism.展开更多
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis.Chronic cerebral hypoperfusion,arising from small vessel disease or carotid stenosis,results in cerebrometabolic disturbances ultimately m...The glymphatic system plays a pivotal role in maintaining cerebral homeostasis.Chronic cerebral hypoperfusion,arising from small vessel disease or carotid stenosis,results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction.However,whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown.Here,we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis.We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glym・phatic system function.The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization.Treatment of digoxin rescued changes in glymphatic transport,white matter structure,and cognitive function.Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury.Our research yields new insight into the relationship between hemodynamics,glymphatic transport,white matter injury,and cognitive changes after chronic cerebral hypoperfusion.展开更多
Cognitive impairment caused by chronic cerebral hypoperfusion(CCH)is associated with white matter injury(WMI),possibly through the alteration of autophagy.Here,the autophagy—lysosomal pathway(ALP)dysfunction in white...Cognitive impairment caused by chronic cerebral hypoperfusion(CCH)is associated with white matter injury(WMI),possibly through the alteration of autophagy.Here,the autophagy—lysosomal pathway(ALP)dysfunction in white matter(WM)and its relationship with cognitive impairment were investigated in rats subjected to two vessel occlusion(2VO).The results showed that cognitive impairment occurred by the 28th day after 2VO.Injury and autophagy activation of mature oligodendrocytes and neuronal axons sequentially occurred in WM by the 3rd day.By the 14th day,abnormal accumulation of autophagy substrate,lysosomal dysfunction,and the activation of mechanistic target of rapamycin(MTOR)pathway were observed in WM,paralleled with mature oligodendrocyte death.This indicates autophagy activation was followed by ALP dysfunction caused by autophagy inhibition or lysosomal dysfunction.To target the ALP dysfunction,enhanced autophagy by systemic rapamycin treatment or overexpression of Beclin1(BECN1)in oligodendrocytes reduced mature oligodendrocyte death,and subsequently alleviated the WMI and cognitive impairment after CCH.These results reveal that early autophagy activation was followed by ALP dysfunction in WM after 2VO,which was associated with the aggravation of WMI and cognitive impairment.This study highlights that alleviating ALP dysfunction by enhancing oligodendrocyte autophagy has benefits for cognitive recovery after CCH.展开更多
文摘Aim To investigate whether tluoxetine, a selective serotonin reuptake inhibitor( SSRI) , could amelio- rate cognitive impairments induced by chronic cerebral hypopeffusion in rats and to clarify the underlying mecha- nisms of its efficacy. Methods Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg · kg^-1 fluoxetine (intragastric injec- tion, i. g. ) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recog- nition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. West- ern blot was used to quantify the protein levels. Results Fluoxetine treatment significantly improved the cognitive 2VO impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, caused an up-regulation of hyperpolarization-activated cyclic nueleotide-gated channel 2 (HCN2) surface expres- sions in the hippocampal CA1 area and fluoxetine also effectively recovered the up-regulation of HCN2 surface ex- pressions. Conclusion Fluoxetine can ameliorate cognitive impairments induced by chronic cerebral hypopeffusion and a possible mechanism may via down-regulating HCN2 surface expression in the Hippocampal CA1 area.
基金supported by the Natural Science Fundation of Jilin Province in China, No.200705272
文摘Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism.
基金supported by Grants from the National Natural Science Foundation of China(81873749 and 81801072)。
文摘The glymphatic system plays a pivotal role in maintaining cerebral homeostasis.Chronic cerebral hypoperfusion,arising from small vessel disease or carotid stenosis,results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction.However,whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown.Here,we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis.We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glym・phatic system function.The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization.Treatment of digoxin rescued changes in glymphatic transport,white matter structure,and cognitive function.Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury.Our research yields new insight into the relationship between hemodynamics,glymphatic transport,white matter injury,and cognitive changes after chronic cerebral hypoperfusion.
基金the Natural Science Foundation of Liaoning Province(LJKQZ2021031,2022-MS-246,China)to Yueyang Liu。
文摘Cognitive impairment caused by chronic cerebral hypoperfusion(CCH)is associated with white matter injury(WMI),possibly through the alteration of autophagy.Here,the autophagy—lysosomal pathway(ALP)dysfunction in white matter(WM)and its relationship with cognitive impairment were investigated in rats subjected to two vessel occlusion(2VO).The results showed that cognitive impairment occurred by the 28th day after 2VO.Injury and autophagy activation of mature oligodendrocytes and neuronal axons sequentially occurred in WM by the 3rd day.By the 14th day,abnormal accumulation of autophagy substrate,lysosomal dysfunction,and the activation of mechanistic target of rapamycin(MTOR)pathway were observed in WM,paralleled with mature oligodendrocyte death.This indicates autophagy activation was followed by ALP dysfunction caused by autophagy inhibition or lysosomal dysfunction.To target the ALP dysfunction,enhanced autophagy by systemic rapamycin treatment or overexpression of Beclin1(BECN1)in oligodendrocytes reduced mature oligodendrocyte death,and subsequently alleviated the WMI and cognitive impairment after CCH.These results reveal that early autophagy activation was followed by ALP dysfunction in WM after 2VO,which was associated with the aggravation of WMI and cognitive impairment.This study highlights that alleviating ALP dysfunction by enhancing oligodendrocyte autophagy has benefits for cognitive recovery after CCH.
文摘目的观察远志汤对慢性脑低灌注大鼠空间学习记忆能力及海马凋亡蛋白的影响。方法采用永久结扎大鼠双侧颈总动脉法造模。将42只SD大鼠采用数字表法随机分为正常对照组,模型组,假手术组,远志汤高、中、低剂量组[20、10、5 g/(kg·d)]及阳性药物对照组[盐酸多奈哌齐0.52 mg/(kg·d)],每组各6只,分别灌胃给药,1次/d,给药4周。通过Morris水迷宫定位航行实验及空间探索实验,观察远志汤对慢性脑低灌注大鼠空间学习记忆能力的影响;通过免疫荧光染色法检测远志汤对慢性脑低灌注大鼠海马凋亡相关蛋白B细胞淋巴瘤-2(B-cell lymphoma-2,Bcl-2)、Bcl-2相关X蛋白抗体(Bcl-2 associated X protein,Bax)及半胱氨酸天冬氨酸特异性蛋白酶3(cysteinyl aspartate specific proteinase-3,Caspase-3)表达的影响。结果模型组大鼠较对照组和假手术组的逃避潜伏期和搜索距离明显延长(P<0.01),在原平台所在象限的搜索时间明显缩短(P<0.01)。而远志汤各剂量干预均可明显缩短大鼠的逃避潜伏期和搜索距离(P<0.01),并延长在原平台所在象限的搜索时间(P<0.01)。模型组大鼠海马Bax和Caspase-3的表达较对照组和假手术组增加,差异有统计学意义(P<0.05),Bcl-2则显著下降,差异有统计学意义(P<0.01)。而远志汤高、中剂量组干预均可明显减少Bax和Caspase-3的表达(P<0.05),增加Bcl-2的表达(P<0.05)。结论远志汤可能通过调节海马凋亡相关蛋白Bcl-2、Bax和Caspase-3的表达以改善慢性脑低灌注大鼠的认知功能。