期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia 被引量:11
1
作者 Ya-yun Yan Xiao-ming Wang +5 位作者 Yan Jiang Han Chen Jin-ting He Jing Mang Yan-kun Shao Zhong-xin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1441-1449,共9页
The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic ce... The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intra- gastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its relat- ed protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism. 展开更多
关键词 nerve regeneration chronic cerebral ischemia FASUDIL RHO-KINASE alpha smooth muscleactin myosin-binding subunit cognitive impairment caspase-3 apoptosis neural regeneration
下载PDF
Changes of hypoxia-inducible factor-1 signaling and the effect of cilostazol in chronic cerebral ischemia 被引量:5
2
作者 Han Chen Aixuan Wei +3 位作者 Jinting He Ming Yu Jing Mang Zhongxin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第19期1803-1813,共11页
Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxyge... Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism. 展开更多
关键词 neural regeneration chronic cerebral ischemia cognitive impairment hypoxia-inducible factor-I hemeoxygenase-1 CILOSTAZOL apoptosis grants-supported paper NEUROREGENERATION
下载PDF
Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury 被引量:5
3
作者 Hai-feng Mao Jun Xie +6 位作者 Jia-qin Chen Chang-fa Tang Wei Chen Bo-cun Zhou Rui Chen Hong-lin Qu Chu-zu Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期596-602,共7页
Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a ... Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration. 展开更多
关键词 nerve regeneration chronic cerebral ischemia aerobic exercise huwentoxin-I Notch signaling pathway calcium overload neuralregeneration
下载PDF
Neuroprotective effects of kaempferol against 2VO-induced chronic cerebral ischemia in rats 被引量:3
4
作者 ZHANG Jun CHENG Xiao +5 位作者 YANG Huan YANG Yin-lin ZHAO Ting-kun WANG Qi WANG Yue-hua DU Guan-hua 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1028-1029,共2页
OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,t... OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,the rats with chronic cerebral ischemia were randomly divied into three groups:model group,KAE 10 and 30 mg·kg-1group.Another group rats without occlusion of common carotid arteries were used as the sham-operation group.Memory behavior was investigated by Morris water maze test.Prehensile ability was investigated by prehensile traction test.The structure of hippocampus and cortex neurons was observed with Nissel staining.In addition,the SOD activity and MDA content in brain tissue were determined.The DJ-1protein level was determined by Western blotting.RESULTS KAE 10 and 30 mg·kg-1could significantly improve cognitive impairment and prehensile traction ability(P<0.01)induced by chronic cerebral ischemia in rats.The results of the pathological analysis also suggested that KAE could ameliorate the pathological damage induced by chronic cerebral ischemia.In addition,KAE 30 mg·kg-1significantly increased the activity of SOD(P<0.05),but had no effect on the content of MDA in rat brain tissue.Western-blotting confirmed that KAE 10 and30 mg·kg-1could increase the expression of anti-oxidation proteins DJ-1 in hippocampus(P<0.01).CONCLUSION KAE may attenuate the chronic cerebral ischemic injury in rats. 展开更多
关键词 KAEMPFEROL chronic cerebral ischemia occlusion of bilateral common carotid arteries
下载PDF
Estrogen intervention in microvascular morphology and choline acetyltransferase expression in rat hippocampal neurons in chronic cerebral ischemia 被引量:1
5
作者 Zhenjun Yang Hongwei Yan +2 位作者 Guomin Zhang Zhihong Chen Jingfeng xue 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第17期1285-1290,共6页
We observed dynamic changes in microvessels and a protective effect of estrogen on chronic cerebral ischemia ovariectomized rat models established through permanent occlusion of bilateral carotid arteries at 7, 14 and... We observed dynamic changes in microvessels and a protective effect of estrogen on chronic cerebral ischemia ovariectomized rat models established through permanent occlusion of bilateral carotid arteries at 7, 14 and 21 days. The results revealed that estrogen improved microvasculature in the hippocampus of chronic cerebral ischemic rats, upregulated Bcl-2 protein expression, downregulated Bax protein expression, increased choline acetyltransferase expression in hippocampal cholinergic neurons, and suppressed hippocampal neuronal apoptosis. These findings indicate that estrogen can protect hippocampal neurons in rats with chronic cerebral ischemia. 展开更多
关键词 ESTROGEN chronic cerebral ischemia HIPPOCAMPUS MICROVASCULATURE Bcl-2 BAX choline acetyltransferase neural regeneration
下载PDF
Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia 被引量:1
6
作者 Gang Chen Qiang Fu Jiangbei Cao Weidong Mi 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第21期1645-1649,共5页
We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, ... We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression. 展开更多
关键词 PROPOFOL chronic cerebral ischemia aged brain-derived neurotrophic factor tyrosine kinasereceptor B cAMP-cAMP responsive element binding protein neural regeneration
下载PDF
Curcumin alters expression of glial fibrillary acidic protein and nestin following chronic cerebral ischemia 被引量:1
7
作者 Peng Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第9期651-655,共5页
Astrocytes can alter their appearance and become reactive following chronic cerebral ischemia. In the present study, a rat model of chronic cerebral ischemia was treated with 50 and 100 mg/kg curcumin. Results showed ... Astrocytes can alter their appearance and become reactive following chronic cerebral ischemia. In the present study, a rat model of chronic cerebral ischemia was treated with 50 and 100 mg/kg curcumin. Results showed that pathological changes of neuronal injury in hippocampal CA1 area of rats induced by chronic cerebral ischemia were attenuated, as well as upregulated expression of glial fibriliary acidic protein and nestin, in a dose-dependent manner. 展开更多
关键词 CURCUMIN chronic cerebral ischemia glial fibrillary acidic protein NESTIN nidogen permanent occlusion of bilateral common carotid arteries
下载PDF
Intercellular adhesion molecule-1 expression in the hippocampal CA1 region of hyperlipidemic rats with chronic cerebral ischemia
8
作者 Yingying Cheng Ying Zhang +1 位作者 Hongmei Song Jiachun Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第17期1312-1317,共6页
Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hypedipidemia, hypertension and diabetes mellitus. After being fed a high-fat diet for 4 weeks, rats ... Chronic cerebral ischemia is a pathological process in many cerebrovascular diseases and it is induced by long-term hypedipidemia, hypertension and diabetes mellitus. After being fed a high-fat diet for 4 weeks, rats were subjected to permanent occlusion of bilateral common carotid arteries to establish rat models of chronic cerebral ischemia with hypedipiclemia. Intercellular adhesion molecule-1 expression in rat hippocampal CA1 region was determined to better understand the mechanism underlying the effects of hypedipidemia on chronic cerebral ischemia. Water maze test results showed that the cognitive function of rats with hyperlipidemia or chronic cerebral ischemia, particulady in rats with hypedipidemia combined with chronic cerebral ischemia, gradually decreased between 1 and 4 months after occlusion of the bilateral common carotid arteries. This correlated with pathological changes in the hippocampal CA1 region as detected by hematoxylin-eosin staining. Immunohistochemical staining showed that intercellular adhesion molecule-1 expression in the hippocampal CA1 region was noticeably increased in rats with hyperlipidemia or chronic cerebral ischemia, in particular in rats with hyperlipidemia combined with chronic cerebral ischemia. These findings suggest that hyperlipidemia aggravates chronic cerebral ischemia-induced neurological damage and cognitive impairment in the rat hippocampal CA1 region which may be mediated, at least in part, by up-regulated expression of intercellular adhesion molecule-l. 展开更多
关键词 HYPERLIPIDEMIA chronic cerebral ischemia intercellular adhesion molecule-I HIPPOCAMPUS CA1 water maze test cognitive function neural regeneration
下载PDF
Mechanism underlying the protective effect of Kaixin Jieyu Fang on vascular depression following cerebral white matter damage 被引量:4
9
作者 Ying Zhang Shijing Huang +5 位作者 Yanyun Wang Junhua Pan Jun Zheng Xianhui Zhang Yuxia Chen Duojiao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第1期61-68,共8页
The Chinese compound Kaixin fieyu Fang can be used to treat vascular depression; however, the underlying mechanism remains unclear. This study established a rat model of chronic cerebral ischemia-caused white matter d... The Chinese compound Kaixin fieyu Fang can be used to treat vascular depression; however, the underlying mechanism remains unclear. This study established a rat model of chronic cerebral ischemia-caused white matter damage by ligation of the bilateral common carotid arteries. Rats received daily intragastric administration of a suspension of Kaixin ]ieyu Fang powder. After 3, 7 and 21 days of treatment, the degree of white matter damage in the cerebral ischemia rat model was alleviated, Bcl-2 protein and mRNA expression in brain tissue increased, and Bax protein and mRNA expression decreased. These results indicate that Kaixin Jieyu Fang can alleviate cere- bral white matter damage, and the underlying mechanism is associated with regulation of Bcl-2/ Bax protein and mRNA expression, which is one of possible mechanism behind the protective effect of Kaixin Jieyu Fang against vascular depression. 展开更多
关键词 nerve regeneration vascular depression ligation of the bilateral common carotid arteries chronic cerebral ischemia white matter damage Kaixin ]ieyu Fang powder Bcl-2 Bax NSFC grant neural regeneration
下载PDF
Qinzhi Zhudan formula improves memory and alleviates neuroinflammation in vascular dementia rats partly by inhibiting the TNFR1-mediated TNF pathway
10
作者 Shuling Liu Fafeng Cheng +7 位作者 Beida Ren Wenxiu Xu Congai Chen Chongyang Ma Xiaole Zhang Feifei Tang Qingguo Wang Xueqian Wang 《Journal of Traditional Chinese Medical Sciences》 CAS 2022年第3期298-310,共13页
Objective: The Qinzhi Zhudan formula(QZZD) exhibits a prominent therapeutic effect in the treatment of vascular dementia(VaD). This study combined a network pharmacology approach and experimental validation to identif... Objective: The Qinzhi Zhudan formula(QZZD) exhibits a prominent therapeutic effect in the treatment of vascular dementia(VaD). This study combined a network pharmacology approach and experimental validation to identify the underlying biological mechanism of QZZD against VaD.Methods: Male Wistar rats received bilateral common carotid artery occlusion(BCCAO) surgery, and after4 weeks of intragastric administration of QZZD, the therapeutic effect was assessed using the Morris water maze test and cerebral blood flow(CBF) assessment. Hematoxylin and eosin staining, Nissl staining, and electron microscopy were used to measure the histopathological changes in the neurons of rats. The effect of QZZD treatment on hippocampal neurotransmitters was assessed by high-performance liquid chromatography with electrochemical detection and liquid chromatography mass spectrometry.Immunofluorescence was used to observe VaD-induced microglia activation. The inflammatory cytokine levels were assessed by enzyme linked immunosorbent assay. Western blot was used to examine the TNFR1-mediated TNF pathway, which was screened out by network pharmacology analysis.Results: QZZD treatment alleviated pathological changes and neuronal damage in VaD rats and attenuated their cognitive impairment. In addition, QZZD increased CBF and the expression of acetylcholine and 5-hydroxytryptamine in the hippocampal region. Notably, QZZD inhibited microglial activation and the expression of IL-6 and TNF-a. Network pharmacology and western blot indicated that QZZD inhibited the levels of TNFR1, NF-κBp65, p-ERK, TNF-a, and IL-6, which are related to the TNFR1-mediated TNF signaling pathway.Conclusion: QZZD clearly improved learning and memory function, reduced brain pathological damage,elevated CBF and hippocampal neurotransmitter levels, and alleviated neuroinflammation of VaD rats partly by inhibiting the TNFR1-mediated TNF pathway, indicating its potential value in the clinical therapy of VaD. 展开更多
关键词 Vascular dementia NEUROINFLAMMATION Inflammatory cytokines MICROGLIA TNF signaling Pathway Network pharmacology cerebral blood flow chronic cerebral ischemia
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部