期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Soil chronosequence derived from landslides on the upper reach of Minjiang River,western China 被引量:1
1
作者 HE Jun-bo WU Yan-hong +2 位作者 BING Hai-jian ZHU He ZHOU Jun 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1282-1292,共11页
Soil chronosequences derived from landslides with certain time series are the great avenue to elevate our understanding on the processes of pedogenesis,nutrient dynamics,and ecosystem evolution.However,the constructio... Soil chronosequences derived from landslides with certain time series are the great avenue to elevate our understanding on the processes of pedogenesis,nutrient dynamics,and ecosystem evolution.However,the construction of reliable soil chronosequence from historical landslides remains intricate.Here,we presented a 22,000-year soil chronosequence from multiple landslides on the upper reach of Minjiang River,western China.The variation in a variety of pedogenesis indices and soil nutrients verified the reliability of the chronosequence.The silica-alumina ratio and silica sesquioxide ratio decreased significantly with soil age.This reflected the enrichment of Al/Fe/Ti oxides but the depletion of Si oxides with the soil development.Meanwhile,the values of the Chemical Index of Weathering and the Chemical Index of Alteration increased significantly with soil age,especially from 5 to 89 years.These variations were attributed to the soil weathering,which led to the destruction of soil minerals with the rapid loss of most of cations(e.g.,K,Na,Ca,and Mg)during the soil development.The concentrations of carbon and nitrogen in topsoil increased with soil age,and the carbon accumulation rate slowed significantly from 5,500 to 22,000 years.The total phosphorus concentrations decreased with soil age,suggesting the gradual loss of soil phosphorus with soil development.The results indicate that the landslide chronosequence established on the upper reach of Minjiang River is reliable and delineates a long-term soil development process,which will provide a great platform for further improvement of biogeochemical theories and understanding sustainable vegetation restoration. 展开更多
关键词 Soil chronosequences LANDSLIDES Weathering indices Pedogenesis Soil nutrients
下载PDF
Changes in Soil C and N Contents and Mineralization Across a Cultivation Chronosequence of Paddy Fields in Subtropical China 被引量:17
2
作者 LI Zhong-Pei ZHANG Tao-Lin +1 位作者 HAN Feng-Xiang P. FELIX-HENNINGSEN 《Pedosphere》 SCIE CAS CSCD 2005年第5期554-562,共9页
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 day... Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratoryincubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cmsoil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation themineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organicC and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and thenincreased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass Nincreased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47%higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation insubtropical China would have attained a steady state of organic C content, being about 19 g kg-1. 展开更多
关键词 cultivation chronosequence MINERALIZATION paddy fields soil C soil N
下载PDF
Adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) in paddy soils cultivated for various years in the subtropical China 被引量:22
3
作者 Liang Ma Renkou Xu Jun Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期689-695,共7页
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The... The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils. 展开更多
关键词 adsorption and desorption Cu(Ⅱ) Pb(Ⅱ) cultivation chronosequence paddy soil
下载PDF
Changes in Soil Properties of Paddy Fields Across a Cultivation Chronosequence in Subtropical China 被引量:10
4
作者 LIZhong-Pei ZHANGTao-Lin +2 位作者 LIDe-Cheng B.VELDE HANFeng-Xiang 《Pedosphere》 SCIE CAS CSCD 2005年第1期110-119,共10页
Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity... Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical, and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil… 展开更多
关键词 cultivation chronosequence paddy fields soil properties subtropical China
下载PDF
Nitrogen Mineralization in Soils Along a Vegetation Chronosequence in Hong Kong 被引量:5
5
作者 L.M.MARAFA K.C.CHAU 《Pedosphere》 SCIE CAS CSCD 2005年第2期181-188,共8页
This research examined nitrogen mineralization in the top 10 cm of soils along a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the rel... This research examined nitrogen mineralization in the top 10 cm of soils along a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected,and the in situ core incubation method was used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground.In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed. 展开更多
关键词 fire impact IMMOBILIZATION nitrogen mineralization successional development vegetation chronosequence
下载PDF
Variations of bacterial and fungal communities along a primary successional chronosequence in the Hailuogou glacier retreat area(Gongga Mountain, SW China) 被引量:4
6
作者 SUN Hong-yang WU Yan-hong +1 位作者 ZHOU Jun BING Hai-jian 《Journal of Mountain Science》 SCIE CSCD 2016年第9期1621-1631,共11页
New terrestrial habitats have emerged and a primary succession has developed in the retreat area (29°34'N, 102°oo'E, 2951-2886 m) after the retreat of the Hailuogou glacier. To investigate soil microbial... New terrestrial habitats have emerged and a primary succession has developed in the retreat area (29°34'N, 102°oo'E, 2951-2886 m) after the retreat of the Hailuogou glacier. To investigate soil microbial changes along the primary successional chronosequence, mixed soil samples were collected at six sites at different ages (2 young sites, 2 mid-aged sites, and 2 old sites). The RNA was extracted and amplified. Bacterial 16S rRNA and fungal 18S rRNA were analyzed using high-throughput 454 pyrosequencing analysis. Overall, pyrosequeneing showed that Proteobacteria, Acidobacteria, Baeteroidetes and Actinobacteria were the main bacterial phyla, and the fungal communities were strongly dominated by the phyla Ascomyeota and Basidiomyeota in the retreat area. The Shannon diversity index (Hshannon) of bacteria was 6.5 - 7.9, and that of fungi was 2.2 - 4.1 in these sites. For the bacterial communities, diversity and evenness values were highest on the mid-age sites and were relatively low on the young trend was observed for the and old sites. A similar fungal communities. In contrast, soil properties showed significant linear distributional trends (increase or decrease) with the age of the site. Combining the linear change patterns of soil properties, the highest values of bacterial and fungal evenness and diversity in the mid-aged sites indicated that there was less environmental stress and more niches for microbial communities in the middle successional stage compare with other stages. In addition, our analysis showed that microbial communities were the main drivers that build a soil organic matter pool to expedite pedogenesis for ecosystem succession. This primary succession in the Hailuogou glacier retreat area is developing rapidly compared with that in other glacier retreats. 展开更多
关键词 Primary successional chronosequence Microbial community Soil properties 454sequencing Rapid succession
下载PDF
Forest succession in post-agricultural Larix olgensis plantations in northeast China 被引量:3
7
作者 Wei Ma Shen Lei +1 位作者 Yujun Sun Jason Grabosky 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2495-2505,共11页
In order to understand the management of regional vegetation,numerical classification and ordination are widely used to investigate community distribution and vegetation features.In particular,two-way indicator-specie... In order to understand the management of regional vegetation,numerical classification and ordination are widely used to investigate community distribution and vegetation features.In particular,two-way indicator-species analysis programs(TWINSPAN)classifies plots and species into different groups.De-trended correspondence analysis(DCA)and canonical correspondence analysis(CCA)reflects the relationship between community and site conditions.Afforestation with Larix olgensis Herry.Plantations is a suitable restoration strategy on post-agricultural fields in the Lesser Khingan Mountains.The results of this study show how these plantations develop over time to establish a reliable pathway model by measuring and clarifying the succession process.Twenty-eight L.olgensis plantations along a 48-year chronosequence of afforestation were investigated with a quadrat sampling method.Species composition,community structure attributes of diversity,and site conditions were analyzed.Communities were classified by TWINSPAN into five successional stages:immature,juvenile,mid-aged,nearmature and mature.Classifications were validated by DCA and CCA analysis.Site conditions such as soil and litter thickness,soil organic matter,soil density,and pH were measured.Successional stages varied in community composition and species population,accompanied by time from afforestation and a gradient of site conditions.This gradient showed changes in vegetation occurrence and diversity coinciding with changes in soil conditions.The study showed that L.olgensis plantations had marked predominance in growth and were associated with improved soil fertility and the formation of a stable plant community. 展开更多
关键词 CHRONOSEQUENCE Community structure Lesser Khingan Mountains Site conditions Species composition
下载PDF
Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations 被引量:3
8
作者 Qicong Wu Xianghe Jiang +2 位作者 Qianwen Lu Jinbiao Li Jinlin Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第1期355-362,共8页
The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify ... The objectives for this study were to determine changes in soil organic carbon(SOC)components and water-stable aggregates for soil profi les from diff erent ages of plantations of Liriodendron chinense and to clarify which organic carbon component is more closely associated with the formation and stability of soil aggregates.Three layers of soil(depths 0–20 cm,20–40 cm,40–60 cm)were collected from young,half-mature and mature stages of L.chinense.SOC,readily oxidizable organic carbon,chemically stable organic carbon and aggregate composition were determined.Intermediate stable organic carbon,the microbial quotient and aggregate stability(mean weight diameter)were calculated.SOC and aggregate stability in the L.chinense plantation did not increase linearly with an increase in L.chinense age;rather,they fi rst decreased,then increased with increasing age of L.chinense.The microbial quotient had a negative eff ect on the level of organic carbon and the stability of aggregates,while chemically stable organic carbon had a positive eff ect,which explained 55.0%and 19.3%of the total variation,respectively(P<0.01).Therefore,more attention should be paid of these two indicators in the future. 展开更多
关键词 Soil organic carbon Aggregate stability Liriodendron chinense plantation CHRONOSEQUENCE Soil depth
下载PDF
The establishment and development of Haloxylon ammodendron promotes salt accumulation in surface soil of arid sandy land 被引量:2
9
作者 YongZhong Su TingNa Liu JunQia Kong 《Research in Cold and Arid Regions》 CSCD 2019年第2期116-125,共10页
Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shel... Haloxylon ammodendron, a representative C_4 succulent xerophyte and salt-secreting plant, is widely used in vegetation reestablishment programs to stabilize shifting sand, and is one of the dominant shrubs in the shelter belt used to control desertification in the desert-oasis ecotone in northwestern China. In this study, we collected soil samples in an age sequence of 0-, 2-, 5-, 13-, 16-, 31-, and 39-year-old H. ammodendron plantations to assess the effects of the shrub on soil fertility and salinity. Results show that SOC and total N concentrations increased significantly with increasing plantation age and increased 5.95-(in the interspaces) to 9.05-fold(under the canopy) and 6.15-to 8.46-fold at the 0-5 cm depth at the 39-year-old plantation compared with non-vegetated sandy land. Simultaneously, H. ammodendron establishment and development resulted in significant salt accumulation in the surface layer. On average, total soil salt content at the 0-5 cm and 5-20 cm depth increased 16.8-fold and 4.4-fold, respectively, compared with non-vegetated sandy land. The increase of total salt derived mostly from the accumulation of SO_4^(2-), Ca^(2+) and Na^+ with H. ammodendron development. The accumulation in salinity was more significant than the increase in fertility, suggesting that improved soil fertility did not limit the impact of salinization. The adverse effect of salt accumulation may result in H. ammodendron plantation degradation and impact community stability in the long run. 展开更多
关键词 HALOXYLON ammodendron SOIL salt and its component SOIL organic carbon plantation CHRONOSEQUENCE SANDY land in desert-oasis ECOTONE
下载PDF
Carbon stock in Korean larch plantations along a chronosequence in the Lesser Khingan Mountains, China 被引量:1
10
作者 Wei MA Yan-hong LIU +1 位作者 Yu-jun SUN Jason Grabosky 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第4期749-760,共12页
Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance... Carbon (C) dynamics are central to understanding ecosystem restoration effects within the context of Grain for Green Project (GGP). GGP stared in China since 2003 to improve the environment. Despite its importance, how total forest ecosystem C stock (FECS) develops fol- lowing land-use changes from cropland to plantation is poorly under- stood, in particular the relationship of C allocation to pools. We quanti- fied C pools in a chronosequence ranging from 0 to 48 years, using com- plete above- and below-ground harvests based on detailed field inventory Stands were chosen along a succession sequence in managed plantations of Korean larch (Larix olgensis Henry.), a native planting species in the Lesser Khingan Mountains, Northeast of China. The FECS of Korean larch plantation (KLP) were dynamic across stand development, chang- ing from 88.2 Mg.ha-1 at cropland, to 183.9 Mg.ha·-1 as an average of forest C from 7- through 48-year-old plantation. In a 48-year-old mature KLP, vegetation comprises 48.63% of FECS and accounts for 67.66% of annual net C increment (ANCI). Soil is responsible for 38.19% and 13.53% of those, and with the remainders of 13.18% and 18.81% in down woody materials. Based on comparisons of our estimate to those of others, we conclude that afforestation of Korean larch plantation is a valid approach to sequester carbon. 展开更多
关键词 Korean larch plantation forest ecosystem carbon stock chronosequence
下载PDF
How do soil fauna and soil microbiota respond to beech forest growth?
11
作者 Matthieu CHAUVAT Andrei S.ZAITSEV +1 位作者 Ernst GABRIEL Volkmar WOLTERS 《Current Zoology》 SCIE CAS CSCD 北大核心 2009年第4期272-278,共7页
The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes(30,62,111,153 yr).Biomass was monitored in major groups... The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes(30,62,111,153 yr).Biomass was monitored in major groups of microflora,microfauna,mesofauna,and macrofauna.Resource availability(litter layer,soil organic mater),biomass of the two dominant decomposer groups(microflora,earthworms)as well as the biomass of mesofauna and microfauna were found to remain quite stable during forest succession.Nevertheless,the marked increase of the biomasses of primary decomposers(fungi,saprophagous macroinvertebrates)in the 62-year-old stand,followed by an increase of the biomasses of macropredators in the 111-year-old stand,indicate substantial changes of several components of edaphic communities during forest development.However,constant values of soil respiration suggest that the overall performance of the soil food web does not change during beech forest succession.Thus,the decomposer system of lowland managed beech forests on calcareous soils seems to be very stable over time.We suggest that earthworm activity might have masked impacts of forest development on other soil biota and led to an astounding stability of decomposer assemblages during beech forest rotation. 展开更多
关键词 BEECH CHRONOSEQUENCE Ecosystem performance Soil food-web Forest
下载PDF
Changes in Soil Composition and Floral Coverage on a Glacial Foreland Chronosequence in Southern Iceland 被引量:1
12
作者 Lawrence H.Tanner Ann E.Walker +1 位作者 Morgan Nivison David L.Smith 《Open Journal of Soil Science》 2013年第4期191-198,共8页
The land surface in front of the Skaftafellsj?kull in southern Iceland, exposed by ice recession commencing about the start of the twentieth century, constitutes a foreland with a maximum age of about 100 years and a ... The land surface in front of the Skaftafellsj?kull in southern Iceland, exposed by ice recession commencing about the start of the twentieth century, constitutes a foreland with a maximum age of about 100 years and a more distal outwash plain. The ages of different surfaces within this sequence are constrained by moraines of known or estimated ages. Across this chronosequence, we measured at various sites the extent of floral coverage of the surface, the soil carbon and nitrogen contents of the substrate and the soil CO2 flux rate. All measured parameters exhibit values increasing with distance from the ice front, which correlates approximately with age. The strongest correlations are seen between distance and the carbon and nitrogen concentrations of the soil. Marked horizonation of the soil is observed only on the oldest surfaces (100+ years). 展开更多
关键词 Skaftafellsjokull Glacial Foreland CHRONOSEQUENCE Soil Carbon Soil CO_(2) Flux
下载PDF
Assessing Spatial Patterns of Plant Communities at Varying Stages of Succession
13
作者 Kevin Aagaard Gregg Hartvigsen 《Applied Mathematics》 2014年第12期1842-1851,共10页
There is a well known connection between the structural complexity of vegetative stands and ecosystem properties. Developing methods to quantify this structural complexity is an important goal for ecologists. We prese... There is a well known connection between the structural complexity of vegetative stands and ecosystem properties. Developing methods to quantify this structural complexity is an important goal for ecologists. We present an efficient and easily implemented field technique for calculating the shape of forest canopies, and the shape of forest stands as succession occurs, using fractal geometry. Fractal geometry can be used to describe complex, non-Euclidean objects that are common in natural systems. We tested the use of this tool in 22 vegetative and forested plots in Western New York State, USA. We found an asymptotic relationship for fractal dimension (D) as a function of basal area (BA;r2= 0.68). In a randomization test to investigate the robustness of D to different tree canopy shapes, we found that D was sensitive to canopy shape switching, suggesting that the method is able to differentiate among similar forests comprised of species having different shaped crowns. We conclude that the shape is conserved in vegetative areas as they progress from one stage of succession to the next (range of mean D: 2.56 to 2.68 across stages). Furthermore, we conclude that the shape filling properties—i.e., distribution of trunks and limbs in a forested area, measured as mean distance—are also conserved across vegetational chronosequences (F = 1.3189, df = 8, 3, p = 0.3341). 展开更多
关键词 ECOLOGICAL SUCCESSION FRACTAL Dimension Vegetational CHRONOSEQUENCE CROWN Shape Statistical Modeling
下载PDF
Evolution and significance of soil magnetism of basalt-derived chronosequence soils in tropical southern China
14
作者 Decheng Li Yanfang Yang +4 位作者 Jinping Guo Bruce Velde Ganlin Zhang Feng Hu Mingsong Zhao 《Agricultural Sciences》 2011年第4期536-543,共8页
Soil samples were collected from eight basalt- derived chronosequence soils with the ages of 0.01, 0.58, 0.92, 1.33, 2.04, 3.04, 3.76 and 6.12 Ma respectively from Leizhou Peninsula and northern Hainan Island of tropi... Soil samples were collected from eight basalt- derived chronosequence soils with the ages of 0.01, 0.58, 0.92, 1.33, 2.04, 3.04, 3.76 and 6.12 Ma respectively from Leizhou Peninsula and northern Hainan Island of tropical southern China. Magnetic parameters of magnetic susceptibility (MS), percentage of frequency-dependent magnetic susceptibility (FDS%), anhysteretic remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM), soft and hard isothermal remanent magnetization (IRMs and IRMh) of the collected samples were measured to study the evolution and the significance of the magnetism with soil age. The results show that the magnetic parameters changed fast from Primosols to Ferrosols (0.01 ~ 0.92 Ma) but slowly at Ferralosols stage (1.33 Ma~), it suggests a stable phase occurred for soil magnetism at Ferralosols, the existence of this phase could be supported by the little changes in the contents of clay, Fet and Fed. Obvious differences existed in the values of magnetic parameters between Ferralosols and other soil types (Primosols and Ferrosols), FDS%: Ferralosols > 10%, Primosols and Ferrosols –8· SIm3·kg–1, Primosols and Ferrosols > 8000 × 10–8 SIm3·kg–1, thus, it is possible to differentiate Ferralosols from other soil types in tropical region by using magnetic indices. 展开更多
关键词 Magnetic Parameters Basalt-Derived CHRONOSEQUENCE Soil Iron OXIDES TROPICAL Southern China
下载PDF
Prairie Restoration Effects on Near-Surface Soil Nutrient Changes Over Time in the Ozark Highlands Region of Northwest Arkansas
15
作者 Kristofor R. Brye Faith Cordes Marya McKee 《Natural Resources》 2020年第8期351-364,共14页
The Ozark Highlands is a unique botanical transition zone where native prairie and forest once co-existed, but conversion to managed agricultural land</span><span style="font-size:12px;font-family:Verdan... The Ozark Highlands is a unique botanical transition zone where native prairie and forest once co-existed, but conversion to managed agricultural land</span><span style="font-size:12px;font-family:Verdana;">use has severely reduced the extent of native tallgrass prairie. Quantifying soil nutrient changes over time can contribute to improved understan</span><span style="font-size:12px;font-family:Verdana;">ding of the importance of soil fertility in prairie restoration success. The objective of t</span><span><span style="font-size:12px;font-family:Verdana;">his study was to evaluate the effects of prairie ecosystem [</span><i><span style="font-size:12px;font-family:Verdana;">i.e.</span></i><span style="font-size:12px;font-family:Verdana;">, chronose</span></span><span style="font-size:12px;font-family:Verdana;">quence of four prairie restorations and a native prairie (NP)] and soil moisture regime (SMR;aquic and udic) on the change in extractable soil nutrients </span><span><span style="font-size:12px;font-family:Verdana;">over a 12-yr period from 2005 to 2017 in the Ozark Highlands region of northwest Arkansas. Soil Ca content decreased over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> ≤ 0.05</span></span><span style="font-size:12px;font-family:Verdana;">) in the 17-year-old-aquic and NP-udic combinations, which did not differ and averag</span><span style="font-size:12px;font-family:Verdana;">ed </span></span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">?</span><span><span style="font-size:12px;font-family:Verdana;">55.7 kg?ha</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">?yr</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">, but did not change over time in all other ecos</span></span></span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">ystem-SMR combinations. Soil Na content also decreased over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> ≤ 0.05) in the 17-year-old-aquic combination (</span></span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">?</span><span><span style="font-size:12px;font-family:Verdana;">0.7 kg?ha</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">?yr</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">), but did not change over time in any of the other ecosystem-SMR combinations. Averaged across SMR, soil P content decreased over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> ≤ 0.05) in the 17-year-old restoration (</span></span><span style="font-size:12px;font-family:Verdana;">?</span><span><span style="font-size:12px;font-family:Verdana;">1.6 kg?ha</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">?yr</span><sup><span style="font-size:12px;font-family:Verdana;">?1</span></sup><span style="font-size:12px;font-family:Verdana;">), while did not change over time in the other three restorations and NP. Soil K, Mg, and Zn content changes over time did not differ (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> > 0.05) among ecosystem or between SMRs.</span><b> </b><span style="font-size:12px;font-family:Verdana;">Soil nutrient changes are manifestations of soil organic matter dynamics over time and contribute to the inherent soil fertility status of an ecosystem, which needs to be balanced for proper ecosystem functioning and restoration success. 展开更多
关键词 CHRONOSEQUENCE Native Prairie Soil Properties
下载PDF
Bacterial community network complexity and role of stochasticity decrease during primary succession
16
作者 Yucheng He Binu M.Tripathi +4 位作者 Jie Fang Zihao Liu Yaping Guo Yue Xue Jonathan M.Adams 《Soil Ecology Letters》 CSCD 2024年第3期45-59,共15页
In microbial ecology,there is limited understanding of the mechanisms governing patterns in community structure across space and time.Here,we studied the changes of bacterial co-occurrence network structure over four ... In microbial ecology,there is limited understanding of the mechanisms governing patterns in community structure across space and time.Here,we studied the changes of bacterial co-occurrence network structure over four primary successional soils after glacier retreat,including a sand dune system and three glacier foreland series,varying in timescale from centuries to millennia.We found that in all series,network structure was most complex in the earliest stages of succession,and became simpler over time.Richness and abundance of keystone species and network stability also declined over time.It appears that with less productive,nutrient poor and physiologically extreme conditions of early succession,closer interactions among bacterial species are ecologically selected for.These may take the form of consortia(with positive interactions)or stronger niche exclusion(with negative interactions).Additionally,we quantified the relative roles of different structuring processes on bacterial community using a bin-based null model analysis(iCAMP).With each successional series,community composition was initially governed by stochasticity,but as succession proceeded there was a progressive increase in deterministic selection over time,correlated with decreasing pH.Overall,our results show a consistency among the four series in long-term processes of community succession,with more integrated networks and greater stochasticity in early stages. 展开更多
关键词 glacial retreat bacteria CHRONOSEQUENCE co-occurrence network 16S rRNA sequencing community assembly
原文传递
Structural and chemical changes in pyrogenic organic matter aged in a boreal forest soil
17
作者 Jari HYVÄLUOMA Arttu MIETTINEN +2 位作者 Riikka KESKINEN Kimmo RASA Henrik LINDBERG 《Pedosphere》 SCIE CAS CSCD 2023年第3期436-447,共12页
Pyrogenic organic matter(PyOM)is formed during wildfires and prescribed burnings or produced intentionally in the form of biochar for soil amendment purposes.It is attracting a growing scientific and practical interes... Pyrogenic organic matter(PyOM)is formed during wildfires and prescribed burnings or produced intentionally in the form of biochar for soil amendment purposes.It is attracting a growing scientific and practical interest due to its important role in the global carbon cycle and agronomic applications as a soil enhancer.Most of the studies on the physicochemical properties of PyOM have been conducted using fresh biochars even though the characteristics of PyOM are expected to alter due to aging processes in soil environment.In this paper,we report the results of a study that utilized X-ray microtomography and elemental analysis to investigate the chemical and structural changes in the PyOM formed during prescribed burning events and aged thereafter for 1–71 years in a boreal forest soil.Our results indicate that changes in elemental composition occurred at decadal timescales,and an apparent steady state was reached ca.30 years after PyOM formation and exposure to the environment.At such timescales,PyOM was able to retain its porous structure originating from the cellular structure of the initial wood tissues.However,structural analysis revealed several effects of aging on the pore structure,such as the formation of surface coating layers,pore fillings,and fractures.These changes may alter pore size distribution and accessibility of the pores and further alter the influence of PyOM on soil functions,such as the transfer and retention of water and nutrients in PyOM pores. 展开更多
关键词 BIOCHAR charcoal CHRONOSEQUENCE porosity prescribed burning soil amendment X-ray microtomography
原文传递
Disparity in soil bacterial community succession along a short time-scale deglaciation chronosequence on the Tibetan Plateau 被引量:2
18
作者 Ajmal Khan Weidong Kong +4 位作者 Mukan Ji Linyan Yue Yue Xie Jinbo Liu Baiqing Xu 《Soil Ecology Letters》 CAS 2020年第2期83-92,共10页
Global warming leads to deglaciations in high-elevation regions,which exposes deglaciated soils to microbial colonization.Disparity in year-to-year successional patterns of bacterial community and influencing factors ... Global warming leads to deglaciations in high-elevation regions,which exposes deglaciated soils to microbial colonization.Disparity in year-to-year successional patterns of bacterial community and influencing factors in freshly deglaciated soils remain unclear.We explored the abundance of bacterial 16S rRNA gene and community succession in deglaciated soils along a 14-year chronosequence after deglaciation using qPCR and Illumina sequencing on the Tibetan Plateau.The results showed that the abundance of bacterial 16S rRNA gene gradually increased with increasing deglaciation age.Soil bacterial community succession was clustered into three deglaciation stages,which were the early(zero-year old),transitional(1-7 years old)and late(8-14 years old)stages.A significantly abrupt bacterial community succession occurred from the early to the transitional stage(P<0.01),while a mild succession(P=0.078)occurred from the transitional to the late stage.The bacterial community at the early and transitional stages were dominated by Proteobacteria,while the late stage was dominated by Actinobacteria.Less abundant(<10%)Acidobacteria,Gemmatimonadetes,Verrucomicrobia,Chloroflexi,Planctomycetes,unclassified bacteria dominantly occurred in the transition and late stage and Cyanobacteria in the early stage.Total organic carbon(24.7%),post deglaciation age(21%),pH(16.5%)and moisture(10.1%)significantly contributed(P<0.05)to the variation of bacterial community succession.Our findings provided a new insight that short time-scale chronosequence is a good model to study yearly resolution of microbial community succession. 展开更多
关键词 Deglaciated soils Bacterial community Bacterial succession Tibetan Plateau Deglaciation chronosequence
原文传递
Is thirty-seven years sufficient for full return of the ant biota following restoration? 被引量:1
19
作者 Jonathan D Majer Brian Heterick +3 位作者 Thomas Gohr Elliot Hughes Lewis Mounsher Andrew Grigg 《Ecological Processes》 SCIE EI 2013年第1期183-194,共12页
Introduction:An assessment of whether rehabilitated mine sites have resulted in natural or novel ecosystems requires monitoring over considerable periods of time or the use of space-for-time substitution(chronosequenc... Introduction:An assessment of whether rehabilitated mine sites have resulted in natural or novel ecosystems requires monitoring over considerable periods of time or the use of space-for-time substitution(chronosequence)approaches.Methods:To provide an assessment of ecosystem recovery in areas mined for bauxite in 1975,the ant fauna of one area planted with Eucalyptus resinifera,one seeded with mixed native species,one topsoiled but unrestored,and a forest reference was subjected to a‘long-term’study by sampling monthly and latterly annually between 1976 and 1989 using pitfall traps.These plots were resampled in 2012.A companion‘short-term’chronosequence study was performed in 1979 in 28 bauxite mines of various ages and restored by a range of different methods,plus three forest references.In order to examine the assertion that the observed differences between restored areas and forest references will lessen with time,sampling using comparable methods was repeated in 2012 in seven of the original plots,representing progressive advances in rehabilitation technology:planted pines;planted eastern states eucalypts;planted native eucalypts;planted eucalypts over seeded understorey;and planted eucalypts on fresh,double-stripped topsoil,plus two forest reference sites.Results:Ant and other invertebrate richness in the long-term study was initially superior in the seeded plot,with little difference between the planted and unplanted plots.It was concluded that although composition of the ant fauna had converged on that of the forest over the 14-year period,differences still persisted.The 2012 resampling revealed that ant species richness and composition had deteriorated in the seeded plot,while values in the unplanted plot,which now supported naturally colonised trees and an understorey,had increased.Differences between all rehabilitated plots and forest still persisted.As with the long-term study,the rate of fauna return and the type of ants present in the short-term study plots differed with the method of rehabilitation used,and,in 1979,no plots had converged on the forest in terms of the ant assemblage.By 2012 ant richness increased,and more so with each advance in rehabilitation technology,except for seeding,in which the understorey had collapsed.Double-stripping of topsoil resulted in the greatest improvements in ant species richness,although none of the areas had converged on the forest reference areas in terms of assemblage composition or ant functional group profiles.Furthermore,assemblage composition in the forest had changed over time,possibly due to reductions in rainfall,which further complicates rehabilitation objectives.Conclusions:It is concluded that although rehabilitation can achieve its objective of restoring diversity,the original assemblage has still not been achieved after 37 years,suggesting that a degree of novelty has been introduced into these older-style rehabilitated areas.The company’s current rehabilitation practices reflect multiple advances in their approach,lending optimism that current restoration may achieve something close to the original ecosystem,an outcome that can only be verified by extended studies like the one described here. 展开更多
关键词 Bauxite mining Ant bioindicator Long-term study CHRONOSEQUENCE Seeding Planting SUCCESSION
原文传递
Soil chronosequence and biosequence on old lake sediments of the Burdur Lake in Turkey 被引量:1
20
作者 Gafur GOZUKARA Yakun ZHANG +2 位作者 Alfred EHARTEMINK Sevda ALTUNBAS Mustafa SARI 《Pedosphere》 SCIE CAS CSCD 2021年第6期882-891,共10页
The Burdur Lake is located in the southwest of Turkey,and its area has decreased by 40% from 211 km^(2) in 1975 to 126 km^(2) in 2019.In this study,we investigated how the soil has changed in the lacustrine material.T... The Burdur Lake is located in the southwest of Turkey,and its area has decreased by 40% from 211 km^(2) in 1975 to 126 km^(2) in 2019.In this study,we investigated how the soil has changed in the lacustrine material.Three soil profiles were sampled from the former lakebed(chronosequence profiles:P1,2007;P2,1994;and P3,1975),and three soil profiles under different land use types(biosequence profiles:P4,native forest vegetation;P5,agriculture;and P6,lakebed)were sampled.The chronosequence and biosequence soil profiles represented various distances from the Burdur Lake and showed different stages of lacustrine evolution.Soil electrical conductivity(EC;18.1 to 0.4 dS m^(-1)),exchangeable Na^(+)(34.7 to 1.4 cmol kg^(-1))and K^(+)(0.61 to 0.56 cmol kg^(-1)),and water-soluble Cl^(-)(70.3 to 2.1 cmol L^(-1))and SO_(4)^(2-)(275.9 to 25.0 cmol L^(-1))decreased with increasing distance from the Burdur Lake,whereas the A horizon thickness(10 to 48 cm),structure formation(0 to 48 cm),gleization-oxidation depth(0 to 79 cm),and montmorillonite and organic matter(OM;25.9 to 46.0 g kg^(-1))contents increased in the chronosequence soil profiles.The formation of P3 in the chronosequence and P5 in the biosequence soil profiles increased due to longer exposure to pedogenic processes(time,land use,vegetation,etc.).Changes in EC,exchangeable cation(Na^(+) and K^(+))and water-soluble anion(Cl^(-) and SO_(4)^(2-))concentrations of the salt-enriched horizon,OM,gleization-oxidation depth,A horizon thickness,and structure formation of the chronosequence and biosequence soil profiles(especially the topsoil horizon)were highly related to the distance from the Burdur Lake,time,and land use. 展开更多
关键词 biosequence soil profile chronosequence soil profile lacustrine material lakebed soil formation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部