Chrysanthemum morifolium,an ornamental crop with diverse forms of inflorescence,is a good model for studying flower development in Asteraceae.However,the genetic background is complex and the mechanisms of regulating ...Chrysanthemum morifolium,an ornamental crop with diverse forms of inflorescence,is a good model for studying flower development in Asteraceae.However,the genetic background is complex and the mechanisms of regulating flower development are still unclear.Here,we identified two natural mutant lines of chrysanthemum and named them M1 and M2 according to the severity of the phenotype.Both lines showed defects in petal identity,and the petals of the M1 line had a mild phenotype:partially loss of petal identity and conversion of petals into green,leaf-like organs.The M2 line had severe phenotypes:in addition to severe petal defects,secondary inflorescences were produced in the capitulum to replace the normal ray and disc florets,which indicated a transformation of a flower meristem into an inflorescence meristem.Transcriptome sequencing of WT and M2 inflorescences was performed and found altered expression of floral organ development A,B and E class genes,where B and E class genes were significantly down-regulated.qRT-PCR analysis in both M1 and M2 lines revealed that the expression of three chrysanthemum class B genes CmAP3.1,CmAP3.2 and CmPI,was negatively correlated with phenotypic severity.This suggests that class B genes in chrysanthemum not only have conserved functions in determining petal identity but also were involved in the determinacy of the flower meristem.This study provides insights into the functions of class B genes in flower development,and is informative for dissecting the molecular mechanisms of flower development in chrysanthemum.展开更多
Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that fla...Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.展开更多
Chrysanthemum indicum Flower is usually consumed as functional food. This paper described an improved total quality assessment method for Chrysanthemum indicum Flower by simultaneous quantitation using a single standa...Chrysanthemum indicum Flower is usually consumed as functional food. This paper described an improved total quality assessment method for Chrysanthemum indicum Flower by simultaneous quantitation using a single standard to determine multi-components method combined with high performance liquid chromatography fingerprint analysis. Six main components of Chrysanthemum indicum Flower including two flavonoids and four phenolic acids were simultaneously quantified using linarin as the internal reference standard. The method was fully validated with respect to linearity, precision, accuracy, robustness and stability.The validated method was successfully applied to the analysis of thirty three batches of Chrysanthemum indicum Flower samples. Under the same chromatographic conditions, fingerprint analysis in combination with Similarity analysis and principal component analysis was performed to identify the samples from different regions. In general, an effective assessment using a single standard to determinate multi-components method combined with fingerprint analysis make the reliable qualitation and quantitation analysis of Chrysanthemum indicum Flower available.展开更多
A total of 58 morphological characteristics were measured on flower-colour sport and original cultivar according to Disticness, Uniformity, Stability' (DUS) Test for New Plant Cultivar of Chrysanthemum published by...A total of 58 morphological characteristics were measured on flower-colour sport and original cultivar according to Disticness, Uniformity, Stability' (DUS) Test for New Plant Cultivar of Chrysanthemum published by Ministry of Agriculture of China The results showed that five characteristics such as the surface colour, the back color of ray floret among them were siginificantly different, their MS (mo by AFLP showed that rphological s GS (genetic imilarity) was 91.4%, and MD (morphological difference) was 8.62%. DNA polymorphic analysis similarity) was 98.6%, and GD (genetic polymorphic diversity) was 2.81%. Five distinct bands which may include the flower-colour sport genes or be the molecular marker linkaged flower-color characteristics were amplified.展开更多
Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a nov...Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by in vitro and in vivo experiments,a chrysanthemum ERF110 homolog that acts as a positive flowering regulator.In addition,CmbHLH110 was also found to regulate the flowering of chrysanthemums,overexpression of CmbHLH110 causes chrysanthemums to flower earlier,and suppressed CmbHLH110 leads to delayed flowering.Furthermore,the loss-of-function Arabidopsis mutant of its homologue PERICYCLE FACTOR TYPE-A 5(PFA5)had a noticeable late flowering phenotype,and CmbHLH110 completely complemented the late flowering phenotype of the pfa5 mutant,whereas heterologous overexpression of CmbHLH110 in Arabidopsis Col-0 caused early flowering.Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum.Therefore,we concluded that CmbHLH110,as a novel flowering regulator,could interact with CmERF110 to regulate flowering in chrysanthemum.展开更多
基金financially supported by the National Natural Science Foundation of China(32171855)China Agriculture Research System(CARS-23-A18),Seed Industry Project of Jiangsu Province(JBGS[2021]020)+2 种基金the China Postdoctoral Science Foundation(2019M661870)the National Key Research and Development Program of China(2020YFD1000400)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Chrysanthemum morifolium,an ornamental crop with diverse forms of inflorescence,is a good model for studying flower development in Asteraceae.However,the genetic background is complex and the mechanisms of regulating flower development are still unclear.Here,we identified two natural mutant lines of chrysanthemum and named them M1 and M2 according to the severity of the phenotype.Both lines showed defects in petal identity,and the petals of the M1 line had a mild phenotype:partially loss of petal identity and conversion of petals into green,leaf-like organs.The M2 line had severe phenotypes:in addition to severe petal defects,secondary inflorescences were produced in the capitulum to replace the normal ray and disc florets,which indicated a transformation of a flower meristem into an inflorescence meristem.Transcriptome sequencing of WT and M2 inflorescences was performed and found altered expression of floral organ development A,B and E class genes,where B and E class genes were significantly down-regulated.qRT-PCR analysis in both M1 and M2 lines revealed that the expression of three chrysanthemum class B genes CmAP3.1,CmAP3.2 and CmPI,was negatively correlated with phenotypic severity.This suggests that class B genes in chrysanthemum not only have conserved functions in determining petal identity but also were involved in the determinacy of the flower meristem.This study provides insights into the functions of class B genes in flower development,and is informative for dissecting the molecular mechanisms of flower development in chrysanthemum.
基金supported by the National Natural Science Foundation of China (Grant Nos.32171849 and 32271946).
文摘Although some species that accumulate only cyanidin(Cy)in nature can produce blue flowers through iron ions,there has been no evidence of blue chrysanthemums being generated in this manner.This study revealed that flavonoid extracts from the ray florets of the chrysanthemum cultivar‘Wandai Fengguang’turned blue when exposed to Fe^(3+).Samples that could turn blue were labeled as CB(Cy-determined blue flowers),while samples that did not turn blue were labeled as CN(Cy-determined non-blue flowers).After a series of experiments,a stable screening system was established using flavonoid extracts containing NaAc buffer at pH 5.5 and a total anthocyanin concentration(TAC)of 30 μmol·L^(-1),and the addition of Fe^(3+)from 0 to 0.25 μmol·L^(-1)allowed for the selection of five CB samples from 39 chrysanthemum cultivars.All five CB samples exhibited flower color phenotypes that belonged to Cluster-I with redness(a*)values ranging from 29.03 to 45.99,yellowness(b*)values from-11.31 to 3.77,and brightness(L*)values from 29.07 to 45.99.Additionally,the ratio of TAC to total luteolin concentration(TLC)was found to be a critical factor for distinguishing between CB and CN samples.To realize the desired blue hue in the flavonoid extracts with the participation of Fe^(3+),a TAC to TLC ratio of 2.25 and above is required.Moreover,the protoplasts and ray florets of CB samples that turned blue with the involvement of Fe^(2+)showed great potential for cultivating blue chrysanthemums through ferric-anthocyanin chelate.Overall,this study reveals that blue flowers can be cultivated through the increase in the iron ion concentration,combined with the accumulation of Cy.
文摘Chrysanthemum indicum Flower is usually consumed as functional food. This paper described an improved total quality assessment method for Chrysanthemum indicum Flower by simultaneous quantitation using a single standard to determine multi-components method combined with high performance liquid chromatography fingerprint analysis. Six main components of Chrysanthemum indicum Flower including two flavonoids and four phenolic acids were simultaneously quantified using linarin as the internal reference standard. The method was fully validated with respect to linearity, precision, accuracy, robustness and stability.The validated method was successfully applied to the analysis of thirty three batches of Chrysanthemum indicum Flower samples. Under the same chromatographic conditions, fingerprint analysis in combination with Similarity analysis and principal component analysis was performed to identify the samples from different regions. In general, an effective assessment using a single standard to determinate multi-components method combined with fingerprint analysis make the reliable qualitation and quantitation analysis of Chrysanthemum indicum Flower available.
文摘A total of 58 morphological characteristics were measured on flower-colour sport and original cultivar according to Disticness, Uniformity, Stability' (DUS) Test for New Plant Cultivar of Chrysanthemum published by Ministry of Agriculture of China The results showed that five characteristics such as the surface colour, the back color of ray floret among them were siginificantly different, their MS (mo by AFLP showed that rphological s GS (genetic imilarity) was 91.4%, and MD (morphological difference) was 8.62%. DNA polymorphic analysis similarity) was 98.6%, and GD (genetic polymorphic diversity) was 2.81%. Five distinct bands which may include the flower-colour sport genes or be the molecular marker linkaged flower-color characteristics were amplified.
基金supported by the National Natural Science Foundation of China(Grant No.32072609)National Key Research and Development Program of China(Grant No.2018YFD1000400)+3 种基金National Natural Science Foundation of China(Grant No.32002075)the China Postdoctoral Science Foundation(Grant No.2019M661871)the Fundamental Research Funds for the Central Universities(Grant No.KJQN202126)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by in vitro and in vivo experiments,a chrysanthemum ERF110 homolog that acts as a positive flowering regulator.In addition,CmbHLH110 was also found to regulate the flowering of chrysanthemums,overexpression of CmbHLH110 causes chrysanthemums to flower earlier,and suppressed CmbHLH110 leads to delayed flowering.Furthermore,the loss-of-function Arabidopsis mutant of its homologue PERICYCLE FACTOR TYPE-A 5(PFA5)had a noticeable late flowering phenotype,and CmbHLH110 completely complemented the late flowering phenotype of the pfa5 mutant,whereas heterologous overexpression of CmbHLH110 in Arabidopsis Col-0 caused early flowering.Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum.Therefore,we concluded that CmbHLH110,as a novel flowering regulator,could interact with CmERF110 to regulate flowering in chrysanthemum.