期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
基于YOLOX-αSMV的带钢材料表面缺陷检测算法
1
作者 曹义亲 刘文才 徐露 《华东交通大学学报》 2024年第2期109-117,共9页
【目的】针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法。【方法】首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度。其... 【目的】针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法。【方法】首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度。其次,在Neck部分加入多维度特征融合模块MDFFM,将通道、空间、位置信息融入特征向量中,加强算法的特征提取能力。最后,引入Varifocal Loss和α-CIoU加权正负样本,提高预测框的回归精度。【结果】实验结果表明,YOLOX-αSMV在NEU-DET数据集中的mAP@0.5:0.95达到了47.54%,较YOLOX算法提高了3.43%。【结论】算法在保持检测速度基本不变的情况下,对模糊缺陷和小目标缺陷的识别、定位能力明显提升。 展开更多
关键词 YOLOX 缺陷检测 α-ciou 坐标注意力 Varifocal loss SoftPool
下载PDF
基于改进ATSS模型的水稻叶片病害检测 被引量:1
2
作者 丁士宁 姜明富 +1 位作者 刘丽娟 张莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第1期93-99,共7页
针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAF... 针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAFE模块代替特征金字塔网络FPN,以减少上采样过程中的信息损失。同时,为提升模型的检测效果,回归分支的损失函数采用CIoU损失函数代替GIoU。改进ATSS模型的平均精度均值可达74.0%,相比于原ATSS模型提升了3.5%。与模型Retinanet、Faster R-CNN、Cascade R-CNN、FCOS、TOOD相比,改进ATSS模型取得了最高的检测精度,且在检测精度和速度上取得了最高的权衡。实验结果表明,改进后的模型能对水稻叶片病害有效检测。 展开更多
关键词 改进ATSS模型 FPN-CARAFE ciou损失函数 水稻叶片病害
下载PDF
基于自注意力机制和改进YOLOv5s的小目标生物检测
3
作者 戚学通 袁红春 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期108-114,共7页
为了快速准确地检测出小目标生物(海参、扇贝、海星和海胆)在复杂水下环境的位置及所属种类,提出一种基于改进YOLOv5s的小目标生物检测算法。在特征提取阶段,引入基于多头自注意力设计的自注意力残差模块,强化网络全局建模能力的同时,... 为了快速准确地检测出小目标生物(海参、扇贝、海星和海胆)在复杂水下环境的位置及所属种类,提出一种基于改进YOLOv5s的小目标生物检测算法。在特征提取阶段,引入基于多头自注意力设计的自注意力残差模块,强化网络全局建模能力的同时,强化目标特征信息;在特征融合阶段,将特征融合网络调整为添加横向连接的双向特征金字塔结构,增强网络融合不同阶段特征信息的能力;在检测阶段,舍弃大目标检测尺度并添加小目标的检测尺度,提升小目标生物的检测精度;最后,引入α–CIo U损失函数作为模型边界框回归损失函数,提高边界框回归精度,进而提高算法检测准确率。定性试验中,几乎所有肉眼可见的水产品目标都被改进模型检出,并正确标记,体现了改进算法的有效性。α值选取试验中,α值为2.0时效果最佳,平均精度均值(mAP)均优于其他值的,达到0.857,较α值为1.0时的提升了0.016。消融试验中,添加任一优化方法均会提升改进模型的检测精度,最终改进模型的m AP达0.873,较原模型的提升了0.032,模型参数量减少了26.8%,仅有5 M。对比试验中,改进模型的m AP较Faster RCNN、YOLOv3、YOLOv4、YOLOv5s、YOLOvX、SSD、NAS–FCOS、改进YOLOv5等的提升了0.020以上;改进模型在本地服务器的检测速度达139帧/s,较YOLOv5s的提升了14帧/s,略逊于以检测速度著称的SSD模型的。可见,改进模型能满足轻量和实时性要求。改进模型也成功部署到安卓移动设备中。 展开更多
关键词 小目标生物检测 YOLOv5s 自注意力机制 α–CIo U损失 双向特征金字塔 移动设备部署
下载PDF
面向无人驾驶场景下的道路多目标检测算法
4
作者 牛文杰 伊力哈木·亚尔买买提 《计算机应用与软件》 北大核心 2024年第8期282-288,共7页
针对无人驾驶场景下目标检测算法误检率高的问题,设计一种改进YOLOv3的多目标检测算法。该文在原始特征提取网络Darknet53中引入分组卷积核替换标准卷积核,降低了卷积操作的计算量;改进原始YOLOv3的特征融合方法,使不同尺度的特征层融... 针对无人驾驶场景下目标检测算法误检率高的问题,设计一种改进YOLOv3的多目标检测算法。该文在原始特征提取网络Darknet53中引入分组卷积核替换标准卷积核,降低了卷积操作的计算量;改进原始YOLOv3的特征融合方法,使不同尺度的特征层融合更加充分,对遮挡目标和小目标的检测效果有明显提升;构建CIoU位置损失函数,提示网络收敛效果。实验结果表明,改进的YOLOv3算法平均精确度提高了1.71%,误检率降低了12%,明显优于原始算法。 展开更多
关键词 无人驾驶 多目标检测 分组卷积 YOLOv3 ciou损失函数
下载PDF
基于改进轻量化YOLOX的无人机航拍目标检测算法
5
作者 胡潇 潘申富 《计算机测量与控制》 2024年第1期57-63,共7页
针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络... 针对小型无人机在巡逻航拍中的应用,提出了一种改进的轻量化目标检测算法,有效解决巡逻过程中空地无线传输信道和机载端计算能力双重受限的难题;该算法在YOLOX算法的基础上,首先利用Mobilenetv2代替CSPDarknet骨干网络作为特征提取网络,降低了模型参数量和计算量,提高目标检测实时性;其次为了弥补轻量化带来的检测精度下降,考虑检测目标框的长宽比引入CIOU定位损失函数,提升目标定位的精度;同时为了平衡训练过程中的正负难易样本,引入Focal Loss置信度损失函数提升模型的检测性能;基于VisDrone2019-DET数据集实验表明,改进后算法模型参数量降低了56.2%,计算量降低了52.5%,在检测精度没有明显下降情况下单张图片推理时间减少了41.4%;最后,将改进后的算法部署到Nvidia Jetson Xavier NX机载端,测得模型检测帧率可达22 FPS,改进后算法满足巡逻任务的应用需求。 展开更多
关键词 无人机 目标检测 轻量化 YOLOX Focal loss ciou
下载PDF
基于Transformer改进的Faster RCNN在复杂环境下的车辆检测
6
作者 王鑫泽 何超 《机电工程技术》 2024年第4期106-110,共5页
在监控视角中目标车辆较小、遮挡较为严重,导致检测精度低。通过探讨卷积神经网络和Transformer模型的互相借鉴和联系,并结合损失函数等常规改进,提出了新的Faster RCNN模型。通过借鉴Transformer模型的思想,对原有的特征提取网络进行... 在监控视角中目标车辆较小、遮挡较为严重,导致检测精度低。通过探讨卷积神经网络和Transformer模型的互相借鉴和联系,并结合损失函数等常规改进,提出了新的Faster RCNN模型。通过借鉴Transformer模型的思想,对原有的特征提取网络进行了改进,将原block比例3∶4∶6∶3改为3∶3∶27∶3、卷积核由3×3改为7×7,增大其感受野,能够更好捕捉图像中的全局特征,使用DW卷积来减少参数量并略微提高性能,使用Channel shuffle解决通道间信息不交流的问题。将原先交并比IoU改为CIoU,与改进后的特征提取网络结合,进一步提高小目标和遮挡目标的检测效果。在UA-DETRAC数据集上,改进后的模型在mAP@0.5:0.95方面比原算法提高了20.20%,并在大、中、小目标下分别提高了15.8%、23%和45.8%,相较于其他模型,如YO⁃LOv7、YOLOv5和Cascade RCNN,mAP@0.5:0.95分别提高了3.3%、5%和6.69%。 展开更多
关键词 TRANSFORMER ciou损失函数 卷积神经网络改进 改进的Faster RCNN
下载PDF
基于YOLOv5s模型的边界框回归损失函数研究
7
作者 董恒祥 潘江如 +2 位作者 董芙楠 赵晴 郭鸿鑫 《现代电子技术》 北大核心 2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率... 针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。 展开更多
关键词 车辆检测 边界框回归损失函数 目标尺度 YOLOv5s ciou SIoU Focal-EIoU WIoU
下载PDF
基于Efficientnet的红外目标检测算法
8
作者 侯艳丽 王娟 《电子测量技术》 北大核心 2023年第16期64-72,共9页
针对复杂场景下红外目标检测存在准确率低、召回率低的问题,为了提高红外图像中的小目标以及被遮挡目标的检测识别能力,提出基于Efficientnet的红外目标检测算法。首先,将高效轻量的Efficientnet作为模型的特征提取主干网,降低模型的参... 针对复杂场景下红外目标检测存在准确率低、召回率低的问题,为了提高红外图像中的小目标以及被遮挡目标的检测识别能力,提出基于Efficientnet的红外目标检测算法。首先,将高效轻量的Efficientnet作为模型的特征提取主干网,降低模型的参数量,提升训练速度。在Efficientnet主干网的最后一个输出层引入SPP模块,丰富特征图的表达能力,进行多尺度融合,扩大特征图的感受野;在模型特征融合部分,使用FPN特征金字塔网络,特征融合后增加CSPNet模块和ECA注意力机制,加强特征提取。检测部分使用YOLO Head,对目标进行分类和回归,并用CIoU Loss作为边界框回归损失函数,提高对被遮挡目标的识别能力。实验结果表明,基于Efficientnet的模型大小仅为YOLOv3的18.8%,并且在FLIR数据集上mAP达到80.74%,相比于YOLOv3算法提高10.12%,该模型在减少模型参数量的同时,提升了检测精度。该模型在FLIR数据集上具有良好的泛化能力,提高了对小目标和遮挡目标的检测能力。 展开更多
关键词 红外目标检测 Efficientnet ECA注意力机制 SPP ciou loss
下载PDF
改进YOLOv5s的无人机目标检测算法 被引量:19
9
作者 宋谱怡 陈红 苟浩波 《计算机工程与应用》 CSCD 北大核心 2023年第1期108-116,共9页
无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模... 无人机在情报、侦察和监视领域,目标自动检测可为侦察等任务提供准确的目标位置及类别,为地面指挥人员提供详尽的目标信息。针对无人机图像背景复杂、分辨率高、目标尺度差异大等特点,提出一种改进YOLOv5s目标检测算法。将压缩-激励模块引入到YOLOv5s算法中,提高网络的特征提取能力;引入双锥台特征融合(bifrustum feature fusion,BFF)结构,提高算法对较小目标的检测检测精度;将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高定位精度。实验结果表明,改进后的YOLOv5s取得了86.3%的平均均值精度(mAP),比原算法YOLOv5s提高了16.8个百分点,在复杂背景下仍能显著提升无人机图像目标检测性能。 展开更多
关键词 无人机检测 YOLOv5s 压缩激励模块 ciou loss
下载PDF
基于注意力机制的实时车辆点云检测算法 被引量:5
10
作者 赖坤城 赵津 +2 位作者 刘畅 刘子豪 王玺乔 《激光与红外》 CAS CSCD 北大核心 2021年第3期285-291,共7页
针对现有激光点云目标检测效果、实时性差的问题,提出了一种基于注意力机制的实时车辆点云检测算法。本文所提出的检测算法将注意力机制算法与YOLOv3相结合,利用注意力机制对点云鸟瞰图的特征进行权重分配,以学习不同通道和空间下特征... 针对现有激光点云目标检测效果、实时性差的问题,提出了一种基于注意力机制的实时车辆点云检测算法。本文所提出的检测算法将注意力机制算法与YOLOv3相结合,利用注意力机制对点云鸟瞰图的特征进行权重分配,以学习不同通道和空间下特征的相关性,并通过CIOU loss和Focal loss来改进检测器的损失函数。实验结果表明基于注意力机制的车辆点云检测算法检测速度可达30帧/秒,车辆目标的平均检测精度达到了92.5%。并且在实车数据测试中,该算法能快速准确的对一定范围内车辆进行准确识别,并且达到实时检测效果。 展开更多
关键词 车辆检测 注意力机制 YOLOv3 ciou loss
下载PDF
一种基于YOLOv5s的红外图像目标检测改进算法 被引量:4
11
作者 李晓佩 张寅宝 +1 位作者 李严培 姚芸星 《激光与红外》 CAS CSCD 北大核心 2023年第7期1043-1051,共9页
受热红外成像方式限制,交通场景下红外图像存在对比度低、目标尺度和姿态的多样性以及目标之间的相互遮挡问题,从而造成检测精度下降,部分目标出现漏检、误检的情况。本文在YOLOv5s的基础上提出一种改进算法:在数据处理方面,使用AHE算... 受热红外成像方式限制,交通场景下红外图像存在对比度低、目标尺度和姿态的多样性以及目标之间的相互遮挡问题,从而造成检测精度下降,部分目标出现漏检、误检的情况。本文在YOLOv5s的基础上提出一种改进算法:在数据处理方面,使用AHE算法对训练集图像进行部分数据增强;在模型改进方面,通过引入跨域迁移学习策略、插入通道注意力机制SENet、改进损失函数GIoU为α-CIoU对YOLOv5s进行改进。并通过消融实验的方式,在自制数据集上对夜间道路环境下的电动自行车驾驶行为进行检测。实验结果表明,改进后的算法对单人驾驶电动自行车行为检测的平均精度达到了95.9%,比YOLOv5s的检测精度提高了3.1%;对载人驾驶电动自行车行为检测的平均精度达到了88.4%,比YOLOv5s的检测精度提高了9.5%;总类别检测的平均精度达到了92.2%,比YOLOv5s的检测精度提高了6.4%,有效降低了红外目标漏检、误检的概率。 展开更多
关键词 YOLOv5s 红外目标检测 跨域迁移学习 SENet α-ciou loss
下载PDF
改进YOLO v4模型在鱼类目标检测上的应用研究 被引量:8
12
作者 郑宗生 李云飞 +2 位作者 卢鹏 邹国良 王振华 《渔业现代化》 CSCD 2022年第1期82-88,96,共8页
鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函... 鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函数基础上构建了新的损失项,改进的损失函数使真实框与相交框呈相同宽高比进行回归,同时通过设置多锚点框模式,增强在特定尺寸面积上的检测效果。结果显示:改进YOLO v4模型的mAP(mean Average Precision)比原模型有较大提升,在自建数据集、Fish4Knowledge数据集和NCFM数据集上的mAP分别达到了94.22%、99.52%、92.16%。研究表明,改进YOLO v4模型可以快速准确地检测到鱼的位置和类别,检测速度满足实时的要求,可以为渔业精准养殖等提供参考。 展开更多
关键词 鱼类目标检测 ciou损失 损失函数 YOLO v4模型
下载PDF
基于改进YOLOv3算法的车辆目标检测 被引量:12
13
作者 霍爱清 杨玉艳 谢国坤 《计算机工程与设计》 北大核心 2022年第7期1981-1989,共9页
为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,... 为有效解决车辆目标检测算法参数量大、计算成本高等问题,提出一种改进YOLOv3算法。利用深度可分离卷积和注意力机制重新设计主干特征提取网络结构,通过增大神经网络深度、拓宽特征提取层数实现更高层语义信息的提取,可获得更精细特征,减少模型参数量和计算量;引入CIOU回归优化损失函数,量化预测框与真实框中心点距离、重叠面积、尺度以及长宽比等评测指标,解决均方误差(MSE)损失优化方向不一致的问题,使目标框回归更加稳定。实验结果表明,该算法参数量为19.56 M,比YOLOv3算法降低了近67%,同时平均精度均值(mAP)提高了3.68%,每秒帧数(FPS)提高了8帧,为车辆目标检测提供了容易部署在移动端的轻量级网络。 展开更多
关键词 车辆检测 深度学习 YOLOv3算法 深度可分离卷积 ciou损失
下载PDF
密集交通场景中改进YOLOv3目标检测优化算法 被引量:5
14
作者 霍爱清 张书涵 +2 位作者 杨玉艳 胥静蓉 王泽文 《计算机工程与科学》 CSCD 北大核心 2023年第5期878-884,共7页
针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以... 针对交通拥堵的车辆密集场景中检测目标重叠率高而导致漏检和误检的问题,提出了改进YOLOv3、CIoU损失函数优化以及SD-NMS优化算法(简记L-YOLOv3+CIoU Loss+SD-NMS)。利用深度可分离卷积、SE模块和Ghost模块改进YOLOv3的残差单元结构,以提高对密集目标的特征提取能力,减少网络模型参数量;采用完整交并比CIoU损失函数加快网络模型收敛速度,同时将多目标集合预测思想与DIoU-NMS有机结合,提出了SD-NMS优化算法,以降低漏检误检率。在BDD100K数据集上进行实验,结果表明,改进的目标检测算法召回率达到91.58%,精准率达到93.04%,与YOLOv3算法相比,召回率和精准率分别提升了12.09%和9.52%,具有更好的检测效果。 展开更多
关键词 目标检测 深度学习 YOLOv3算法 ciou损失 非极大值抑制
下载PDF
基于YOLOv5的遥感图像目标检测 被引量:13
15
作者 董丽君 曾志高 +2 位作者 易胜秋 文志强 孟辰 《湖南工业大学学报》 2022年第3期44-50,共7页
为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干... 为了解决在遥感图像目标检测任务中目标背景繁杂难以识别且目标尺寸复杂的问题,提出一种基于YOLOv5的遥感图像检测优化模型。首先,对输入数据进行马赛克增强,增加样本多样性,同时采用自适应锚框计算,寻求最优初值锚框;然后,把通过主干网络提取到的特征层进行特征融合得到最优特征层,再对定位损失进行优化,采用CIoU loss作为定位损失函数,Focal loss作为分类损失函数;最后,在测试时对输入图片采用自适应图片缩放,以减少信息冗余,加快模型检测速率。该模型能有效捕捉图像特征,实现快速精准的目标定位。对公开10类地理空间物体检测数据集(NWPU-VHR 10)和RSOD数据集进行了训练测试,对比试验表明,优化模型mAP达到0.9896,比优化前的模型mAP提升了2.31%,与使用相同数据集的其他模型的最优值进行比较,其mAP提升了8.19%,该方法能有效提高遥感图像检测精度。 展开更多
关键词 遥感图像检测 YOLOv5算法 ciou loss Focal loss 马赛克数据增强 自适应方法
下载PDF
改进YOLOv5算法在停车场火灾检测中的应用 被引量:4
16
作者 张震 晋志华 陈可鑫 《郑州大学学报(工学版)》 CAS 北大核心 2023年第4期16-21,共6页
针对传统传感器对于地下停车场火灾检测不及时、目标检测对小型火焰目标检测效果较差等问题,提出了一种改进的YOLOv5火灾检测算法。为了提高检测算法对小型火焰目标的检测效果,在YOLOv5s网络骨干中增加小目标检测层;为了增强火焰特征的... 针对传统传感器对于地下停车场火灾检测不及时、目标检测对小型火焰目标检测效果较差等问题,提出了一种改进的YOLOv5火灾检测算法。为了提高检测算法对小型火焰目标的检测效果,在YOLOv5s网络骨干中增加小目标检测层;为了增强火焰特征的表达,提出了一种基于CA注意力机制的间隔注意力结构;为了提升定位精度、降低目标漏检率,将GIoU替换为CIoU。设计了3组消融实验以及1组对比实验用来验证所提算法的有效性。实验结果表明:所提算法在自定义数据集上的mAP_(0.5)、召回率R分别为92%、96.9%。与YOLOv5s模型相比,所提算法在自定义火焰数据集上的mAP_(0.5)提升了1.8百分点,R提升了2.0百分点。所提算法权重大小仅为16.4 MB,帧率能达到113帧/s,具有较小的模型体积以及较快的检测速度,且能够准确检出小型火焰目标,有效提升了地下停车场火灾防范能力。 展开更多
关键词 地下停车场 火灾检测 YOLOv5 坐标注意力 ciou损失函数
下载PDF
基于YOLOv3的轻量化高精度多目标检测模型 被引量:6
17
作者 陈晓艳 任玉蒙 +3 位作者 张东洋 洪耿 许能华 闫潇宁 《天津科技大学学报》 CAS 2021年第3期33-38,共6页
针对当前目标检测模型在边缘设备中的应用占用内存过大、无法达到实时性要求的问题,提出一种基于YOLOv3的轻量化多目标检测模型.采用MobileNet网络进行点卷积和深度可分离卷积运算提取图像特征,显著降低了模型的参数量.同时,为了保证目... 针对当前目标检测模型在边缘设备中的应用占用内存过大、无法达到实时性要求的问题,提出一种基于YOLOv3的轻量化多目标检测模型.采用MobileNet网络进行点卷积和深度可分离卷积运算提取图像特征,显著降低了模型的参数量.同时,为了保证目标检测精度,在训练过程中不仅采用CIOU(completeintersectionoverunion)目标框回归损失函数,而且在损失函数中引入Focal loss,减少正负样本分布不平衡所造成的误差;引入Label Smoothing调整真实样本标签类别在计算损失函数时的权重,有效抑制过拟合问题.经3.5万个实际场景数据训练,本文提出的改进模型在行人和车辆的检测精度上分别达到47.3%和69.67%,模型大小仅为YOLOv3的40%,实现了理想检测精度水平下的模型轻量化. 展开更多
关键词 多目标检测 轻量化模型 YOLOv3 ciou Focal loss
下载PDF
基于双模型的输电线绝缘子自爆检测算法 被引量:3
18
作者 林航 耿多飞 +2 位作者 于浩 胡丹 张可 《计算机与现代化》 2022年第7期15-20,共6页
针对输电线路无人机巡检图像中绝缘子自爆缺陷目标小而难以精准检测的问题,提出一种基于Faster R-CNN和改进的YOLO v3级联双模型的绝缘子自爆缺陷检测算法。首先,利用无人机巡检图像构建绝缘子串缺陷数据集,并对训练图像样本进行翻转预... 针对输电线路无人机巡检图像中绝缘子自爆缺陷目标小而难以精准检测的问题,提出一种基于Faster R-CNN和改进的YOLO v3级联双模型的绝缘子自爆缺陷检测算法。首先,利用无人机巡检图像构建绝缘子串缺陷数据集,并对训练图像样本进行翻转预处理,增加样本数量,提高模型泛化能力,避免过拟合;然后,利用Faster R-CNN检测图像中的绝缘子串,再将检测到的绝缘子串图像送入改进的YOLO v3网络进行自爆缺陷的定位。改进的YOLO v3网络是在YOLO v3基础上借鉴FPN的思想,增加特征提取层并进行特征融合,充分利用深层特征和浅层特征;同时采用CIoU Loss函数作为损失函数,以解决边界框宽高比尺度信息。实验结果表明,本文算法在所构建的绝缘子缺陷数据集上的检测准确率达到91.2%,相比Faster R-CNN或YOLO v3等单模型检测算法提升了3.31个百分点以上,能有效实现无人机巡检中绝缘子自爆缺陷的检测,为输电线路智能化巡检故障诊断提供方法支持。 展开更多
关键词 绝缘子自爆 目标检测 Faster R-CNN YOLO v3 ciou loss
下载PDF
一种改进YOLOv3的学校场所目标识别方法 被引量:1
19
作者 高锦风 陈玉 +2 位作者 魏永明 李剑南 江若楠 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2023年第4期531-539,共9页
基于遥感影像进行特定场所类型的识别在智慧城市规划、土地利用分析、平安城市建设等多方面都具有重要意义。然而,不同场所的环境景观属性(如道路和停车场等)比较复杂,难以用传统的分类或目标识别方法基于简单的规则进行识别。卷积神经... 基于遥感影像进行特定场所类型的识别在智慧城市规划、土地利用分析、平安城市建设等多方面都具有重要意义。然而,不同场所的环境景观属性(如道路和停车场等)比较复杂,难以用传统的分类或目标识别方法基于简单的规则进行识别。卷积神经网络具有较强的空间信息挖掘能力,尝试对著名的YOLOv3模型进行改进,提出一种名为YOLO-S-CIoU的新模型,用于学校场所目标的识别。主要改进工作包括:1)使用SRXnet模块替换YOLOv3中的Darknet53模块以提高特征学习能力;2)利用complete-IoU loss(CIoU loss)优化边界框的回归;3)基于自制的学校场所样本数据集(SS数据集)进行训练和验证。实验结果表明,YOLO-S-CIoU的平均精度(AP)达到96.46%;参数量为226 MB。与改进前YOLOv3相比,YOLO-S-CIoU实现了参数量9 MB的下降以及AP 2.3%的提升。此外,在新疆图木舒克市和烟台市区域遥感影像中对学校场所目标识别,召回率比YOLOv3分别提高37.5%和42.2%。这表明改进后的网络模型在不同地理区域的遥感影像识别中具有更强的鲁棒性和更高的识别能力。 展开更多
关键词 YOLO-S-ciou SE-ResNeXt ciou loss 特定场所识别 遥感 学校识别
下载PDF
基于YOLACT++的槟榔检测算法研究 被引量:1
20
作者 舒军 王祥 舒心怡 《湖北工业大学学报》 2022年第4期29-35,共7页
设计了一个基于YOLACT++深度学习算法的槟榔检测模型。针对传送带上采集的槟榔图片分割精度低和预测框不精确造成槟榔分级准确率低的问题。在模型主干网络中引入改进Res2Net模块,改善槟榔掩模分割精度。在模型边界框回归损失中引入CIoU... 设计了一个基于YOLACT++深度学习算法的槟榔检测模型。针对传送带上采集的槟榔图片分割精度低和预测框不精确造成槟榔分级准确率低的问题。在模型主干网络中引入改进Res2Net模块,改善槟榔掩模分割精度。在模型边界框回归损失中引入CIoU损失函数,提高预测框的检测精度。结果表明,改进模型的掩模mAP相较YOLACT++、Mask R-CNN、SOLOv2分别高出5.20%,4.09%,2.37%。预测框mAP相较YOLACT++、Mask R-CNN分别高出5.41%,4.90%。相较于模型改进前分级准确率提升2.12%。 展开更多
关键词 YOLACT++ 槟榔检测 Res2Net模块 ciou损失函数
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部