To share data securely with secure attribute revocation,anti-collusion,and dynamic user management in the 5G device-to-device(D2D)environment,a novel dynamic anti-collusion ciphertext policy attribute-based encryption...To share data securely with secure attribute revocation,anti-collusion,and dynamic user management in the 5G device-to-device(D2D)environment,a novel dynamic anti-collusion ciphertext policy attribute-based encryption(NDA-CP-ABE)scheme in the 5G D2D environment is proposed.On the basis of the ciphertext policy attribute-based encryption algorithm,fine-grained access control and secure attribute revocation are realized,and the confidentiality of data is guaranteed.A polynomial function is adopted in the ciphertext generation phase to realize dynamic user management.A random number is used to prevent a collusion attack among the legitimate user equipment(UE),revoked UE,and external network attackers.Finally,on the basis of the Diffie-Hellman problem,the NDA-CP-ABE scheme is formally proved,and the simulation performances are compared with those of similar schemes.The results show that data can be securely shared through a D2D channel with secure attribute revocation,anti-collusion,and dynamic user management.Moreover,compared with similar schemes,the NDA-CP-ABE scheme has higher efficiency in encryption,decryption,and storage.展开更多
The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of t...The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of their data when the data is outsourced to the cloud.Therefore,access control mechanisms will become a significant challenging problem.The Ciphertext-Policy Attribute-Based Encryption(CP-ABE)is an essential solution in which the user can control data access.CP-ABE encrypts the data under a limited access policy after the user sets some access policies.The user can decrypt the data if they satisfy the limited access policy.Although CP-ABE is an effective access control program,the privacy of the policy might be compromised by the attackers.Namely,the attackers can gather important information from plain text policy.To address this issue,the SHA-512 algorithm is presented to create a hash code for the user’s attributes in this paper.Depending on the created hash codes,an access policy will be formed.It leads to protecting the access policy against attacks.The effectiveness of the proposed scheme is assessed based on decryption time,private key generation time,ciphertext generation time,and data verification time.展开更多
Attribute-based encryption is cryptographic techniques that provide flexible data access control to encrypted data content in cloud storage.Each trusted authority needs proper management and distribution of secret key...Attribute-based encryption is cryptographic techniques that provide flexible data access control to encrypted data content in cloud storage.Each trusted authority needs proper management and distribution of secret keys to the user’s to only authorized user’s attributes.However existing schemes cannot be applied multiple authority that supports only a single keywords search compare to multi keywords search high computational burden or inefficient attribute’s revocation.In this paper,a ciphertext policy attribute-based encryption(CP-ABE)scheme has been proposed which focuses on multi-keyword search and attribute revocation by new policy updating feathers under multiple authorities and central authority.The data owner encrypts the keywords index under the initial access policy.Moreover,this paper addresses further issues such as data access,search policy,and confidentiality against unauthorized users.Finally,we provide the correctness analysis,performance analysis and security proof for chosen keywords attack and search trapdoor in general group model using DBDH and DLIN assumption.展开更多
In this paper, we present the first ciphertext-policy attribute-based encryption (CP-ABE) scheme for polynomial-size general circuits based on bilinear maps which is more suitable for practical use and more efficien...In this paper, we present the first ciphertext-policy attribute-based encryption (CP-ABE) scheme for polynomial-size general circuits based on bilinear maps which is more suitable for practical use and more efficient than multilinear maps. Our scheme uses a top-down secret sharing and FANOUT gate to resist the "backtracking attack" which is the main barrier expending access tree to general circuit. In the standard model, selective security of our scheme is proved. Comparing with current scheme for general circuits from bilinear maps, our work is more efficient.展开更多
For leakage-resilient ciphertext-policy attribute-based encryption (CP-ABE) at present, the size of the ciphertexts in most of them relies on the number of attributes. How to overcome this shortcoming is a challenge...For leakage-resilient ciphertext-policy attribute-based encryption (CP-ABE) at present, the size of the ciphertexts in most of them relies on the number of attributes. How to overcome this shortcoming is a challenge problem. Based on the Goldreich-Levin theorem and dual system encryption, an efficient CP-ABE scheme with constant size ciphertexts is proposed in this paper. It can tolerate leakage on master secret key and attribute-based secret keys with auxiliary inputs. Furthermore, the proposed scheme can be realized as resilience against continual leakage if keys are periodically updated. Under some static assumptions instead of other strong assumptions, the introduced scheme achieves adaptively security in the standard model.展开更多
Attribute-based broadcast encryption(ABBE) under continual auxiliary leakage-resilient(CALR) model can enhance the security of the shared data in broadcasting system since CALR model brings the possibility of new leak...Attribute-based broadcast encryption(ABBE) under continual auxiliary leakage-resilient(CALR) model can enhance the security of the shared data in broadcasting system since CALR model brings the possibility of new leakage-resilient(LR) guarantees. However, there are many shortcomings in the existing works, such as relying on the strong assumptions, low computational efficiency and large size of ciphertexts, etc. How to solve the trade-off between security and efficiency is a challenging problem at present. To solve these problems, this paper gives an ABBE scheme resisting continual auxiliary leakage(CAL) attack. ABBE scheme achieves constant size ciphertexts, and the computational complexity of decryption only depends on the number of receivers instead of the maximum number of receivers of the system. Additionally, it achieves adaptive security in the standard model where the security is reduced to the general subgroup decision(GSD) assumptions(or called static assumptions in the subgroup). Furthermore, it can tolerate leakage on the master secret key and private key with continual auxiliary inputs. Performance analysis shows that the proposed scheme is more efficient and practical than the available schemes.展开更多
密文策略属性基加密(ciphertext-policy attribute-based encryption,CP-ABE)技术可以在保证数据隐私性的同时提供细粒度访问控制.针对现有的基于CP-ABE的访问控制方案不能有效解决边缘计算环境中的关键数据安全问题,提出一种边缘计算...密文策略属性基加密(ciphertext-policy attribute-based encryption,CP-ABE)技术可以在保证数据隐私性的同时提供细粒度访问控制.针对现有的基于CP-ABE的访问控制方案不能有效解决边缘计算环境中的关键数据安全问题,提出一种边缘计算环境中基于区块链的轻量级密文访问控制方案(blockchain-based lightweight access control scheme over ciphertext in edge computing,BLAC).在BLAC中,设计了一种基于椭圆曲线密码的轻量级CP-ABE算法,使用快速的椭圆曲线标量乘法实现算法加解密功能,并将大部分加解密操作安全地转移,使得计算能力受限的用户设备在边缘服务器的协助下能够高效地完成密文数据的细粒度访问控制;同时,设计了一种基于区块链的分布式密钥管理方法,通过区块链使得多个边缘服务器能够协同地为用户分发私钥.安全性分析和性能评估表明BLAC能够保障数据机密性,抵抗共谋攻击,支持前向安全性,具有较高的用户端计算效率,以及较低的服务器端解密开销和存储开销.展开更多
Attribute-Based Encryption (ABE) has been widely used for ciphertext retrieval in the cloud environment.However,bi-flexible attribute control and privacy keywords are difficult problems that have yet to be solved.In t...Attribute-Based Encryption (ABE) has been widely used for ciphertext retrieval in the cloud environment.However,bi-flexible attribute control and privacy keywords are difficult problems that have yet to be solved.In this paper,we introduce the denial of access policy and the mutual matching algorithm of a dataset used to realize bidirectional control of attributes in the cloud server.To solve the problem of keyword privacy,we construct a security trapdoor by adding random numbers that effectively resist keyword guessing attacks from cloud servers and external attackers.System security is reduced to the Deterministic Bilinear Diffie-Hellman (DBDH) hypothesis problem.We validate our scheme through theoretical security analysis and experimental verification.Experiments are conducted on a real dataset,and results show that the scheme has higher security and retrieval efficiency than previous methods.展开更多
This research paper puts emphasis on using cloud computing with Blockchain(BC)to improve the security and privacy in a cloud.The security of data is not guaranteed as there is always a risk of leakage of users’data.B...This research paper puts emphasis on using cloud computing with Blockchain(BC)to improve the security and privacy in a cloud.The security of data is not guaranteed as there is always a risk of leakage of users’data.Blockchain can be used in a multi-tenant cloud environment(MTCE)to improve the security of data,as it is a decentralized approach.Data is saved in unaltered form.Also,Blockchain is not owned by a single organization.The encryption process can be done using a Homomorphic encryption(HE)algorithm along with hashing technique,hereby allowing computations on encrypted data without the need for decryption.This research paper is composed of four objectives:Analysis of cloud security using Blockchain technology;Exceptional scenario of Blockchain architecture in an enterprise-level MTCE;Implementation of cipher-text policy attribute-based encryption(CPABE)algorithm;Implementation of Merkle tree using Ethereum(MTuE)in a Multi-tenant system.Out of these four objectives,the main focus is on the implementation of CP-ABE algorithm.CP-ABE parameters are proposed for different levels of tenants.The levels include inner tenant,outer tenant,Inner-Outer-Tenant,Inner-Outer-External-Tenant,Outer-Inner-Tenant,External-Outer-Inner-Tenant and the parameters such as token,private key,public key,access tree,message,attribute set,node-level,cipher-text,salting which will help in providing better security using CP-ABE algorithm in a multitenant environment(MTE)where tenants can be provided with different levels of security and achieved 92 percentage of authenticity and access-control of the data.展开更多
基金The National Natural Science Foundation of China(No.61372103)the Natural Science Foundation of Jiangsu Province(No.SBK2020020282)+1 种基金the Program of Key Laboratory of Information Network Security of the Ministry of Public Security(No.C19607)the Program of Key Laboratory of Computer Network Technology of Jiangsu Province.
文摘To share data securely with secure attribute revocation,anti-collusion,and dynamic user management in the 5G device-to-device(D2D)environment,a novel dynamic anti-collusion ciphertext policy attribute-based encryption(NDA-CP-ABE)scheme in the 5G D2D environment is proposed.On the basis of the ciphertext policy attribute-based encryption algorithm,fine-grained access control and secure attribute revocation are realized,and the confidentiality of data is guaranteed.A polynomial function is adopted in the ciphertext generation phase to realize dynamic user management.A random number is used to prevent a collusion attack among the legitimate user equipment(UE),revoked UE,and external network attackers.Finally,on the basis of the Diffie-Hellman problem,the NDA-CP-ABE scheme is formally proved,and the simulation performances are compared with those of similar schemes.The results show that data can be securely shared through a D2D channel with secure attribute revocation,anti-collusion,and dynamic user management.Moreover,compared with similar schemes,the NDA-CP-ABE scheme has higher efficiency in encryption,decryption,and storage.
文摘The cloud allows clients to store and share data.Depending on the user’s needs,it is imperative to design an effective access control plan to share the information only with approved users.The user loses control of their data when the data is outsourced to the cloud.Therefore,access control mechanisms will become a significant challenging problem.The Ciphertext-Policy Attribute-Based Encryption(CP-ABE)is an essential solution in which the user can control data access.CP-ABE encrypts the data under a limited access policy after the user sets some access policies.The user can decrypt the data if they satisfy the limited access policy.Although CP-ABE is an effective access control program,the privacy of the policy might be compromised by the attackers.Namely,the attackers can gather important information from plain text policy.To address this issue,the SHA-512 algorithm is presented to create a hash code for the user’s attributes in this paper.Depending on the created hash codes,an access policy will be formed.It leads to protecting the access policy against attacks.The effectiveness of the proposed scheme is assessed based on decryption time,private key generation time,ciphertext generation time,and data verification time.
基金supported by the Foundational Research Funds for the Central University(No.30918012204).
文摘Attribute-based encryption is cryptographic techniques that provide flexible data access control to encrypted data content in cloud storage.Each trusted authority needs proper management and distribution of secret keys to the user’s to only authorized user’s attributes.However existing schemes cannot be applied multiple authority that supports only a single keywords search compare to multi keywords search high computational burden or inefficient attribute’s revocation.In this paper,a ciphertext policy attribute-based encryption(CP-ABE)scheme has been proposed which focuses on multi-keyword search and attribute revocation by new policy updating feathers under multiple authorities and central authority.The data owner encrypts the keywords index under the initial access policy.Moreover,this paper addresses further issues such as data access,search policy,and confidentiality against unauthorized users.Finally,we provide the correctness analysis,performance analysis and security proof for chosen keywords attack and search trapdoor in general group model using DBDH and DLIN assumption.
基金Supported by the National Natural Science Foundation of China(61272488)Science and Technology on Information Assurance Laboratory(KJ-15-006)Fundamental and Frontier Technology Research of Henan Province(162300410192)
文摘In this paper, we present the first ciphertext-policy attribute-based encryption (CP-ABE) scheme for polynomial-size general circuits based on bilinear maps which is more suitable for practical use and more efficient than multilinear maps. Our scheme uses a top-down secret sharing and FANOUT gate to resist the "backtracking attack" which is the main barrier expending access tree to general circuit. In the standard model, selective security of our scheme is proved. Comparing with current scheme for general circuits from bilinear maps, our work is more efficient.
基金supported in part by the Nature Science Foundation of China (61472307, 61402112, 61100165, 61100231)Natural Science Basic Research Plan in Shaanxi Province of China (2016JM6004)
文摘For leakage-resilient ciphertext-policy attribute-based encryption (CP-ABE) at present, the size of the ciphertexts in most of them relies on the number of attributes. How to overcome this shortcoming is a challenge problem. Based on the Goldreich-Levin theorem and dual system encryption, an efficient CP-ABE scheme with constant size ciphertexts is proposed in this paper. It can tolerate leakage on master secret key and attribute-based secret keys with auxiliary inputs. Furthermore, the proposed scheme can be realized as resilience against continual leakage if keys are periodically updated. Under some static assumptions instead of other strong assumptions, the introduced scheme achieves adaptively security in the standard model.
基金supported by the National Cryptography Development Fund ( MMJJ20180209)。
文摘Attribute-based broadcast encryption(ABBE) under continual auxiliary leakage-resilient(CALR) model can enhance the security of the shared data in broadcasting system since CALR model brings the possibility of new leakage-resilient(LR) guarantees. However, there are many shortcomings in the existing works, such as relying on the strong assumptions, low computational efficiency and large size of ciphertexts, etc. How to solve the trade-off between security and efficiency is a challenging problem at present. To solve these problems, this paper gives an ABBE scheme resisting continual auxiliary leakage(CAL) attack. ABBE scheme achieves constant size ciphertexts, and the computational complexity of decryption only depends on the number of receivers instead of the maximum number of receivers of the system. Additionally, it achieves adaptive security in the standard model where the security is reduced to the general subgroup decision(GSD) assumptions(or called static assumptions in the subgroup). Furthermore, it can tolerate leakage on the master secret key and private key with continual auxiliary inputs. Performance analysis shows that the proposed scheme is more efficient and practical than the available schemes.
文摘密文策略属性基加密(ciphertext-policy attribute-based encryption,CP-ABE)技术可以在保证数据隐私性的同时提供细粒度访问控制.针对现有的基于CP-ABE的访问控制方案不能有效解决边缘计算环境中的关键数据安全问题,提出一种边缘计算环境中基于区块链的轻量级密文访问控制方案(blockchain-based lightweight access control scheme over ciphertext in edge computing,BLAC).在BLAC中,设计了一种基于椭圆曲线密码的轻量级CP-ABE算法,使用快速的椭圆曲线标量乘法实现算法加解密功能,并将大部分加解密操作安全地转移,使得计算能力受限的用户设备在边缘服务器的协助下能够高效地完成密文数据的细粒度访问控制;同时,设计了一种基于区块链的分布式密钥管理方法,通过区块链使得多个边缘服务器能够协同地为用户分发私钥.安全性分析和性能评估表明BLAC能够保障数据机密性,抵抗共谋攻击,支持前向安全性,具有较高的用户端计算效率,以及较低的服务器端解密开销和存储开销.
文摘Attribute-Based Encryption (ABE) has been widely used for ciphertext retrieval in the cloud environment.However,bi-flexible attribute control and privacy keywords are difficult problems that have yet to be solved.In this paper,we introduce the denial of access policy and the mutual matching algorithm of a dataset used to realize bidirectional control of attributes in the cloud server.To solve the problem of keyword privacy,we construct a security trapdoor by adding random numbers that effectively resist keyword guessing attacks from cloud servers and external attackers.System security is reduced to the Deterministic Bilinear Diffie-Hellman (DBDH) hypothesis problem.We validate our scheme through theoretical security analysis and experimental verification.Experiments are conducted on a real dataset,and results show that the scheme has higher security and retrieval efficiency than previous methods.
文摘This research paper puts emphasis on using cloud computing with Blockchain(BC)to improve the security and privacy in a cloud.The security of data is not guaranteed as there is always a risk of leakage of users’data.Blockchain can be used in a multi-tenant cloud environment(MTCE)to improve the security of data,as it is a decentralized approach.Data is saved in unaltered form.Also,Blockchain is not owned by a single organization.The encryption process can be done using a Homomorphic encryption(HE)algorithm along with hashing technique,hereby allowing computations on encrypted data without the need for decryption.This research paper is composed of four objectives:Analysis of cloud security using Blockchain technology;Exceptional scenario of Blockchain architecture in an enterprise-level MTCE;Implementation of cipher-text policy attribute-based encryption(CPABE)algorithm;Implementation of Merkle tree using Ethereum(MTuE)in a Multi-tenant system.Out of these four objectives,the main focus is on the implementation of CP-ABE algorithm.CP-ABE parameters are proposed for different levels of tenants.The levels include inner tenant,outer tenant,Inner-Outer-Tenant,Inner-Outer-External-Tenant,Outer-Inner-Tenant,External-Outer-Inner-Tenant and the parameters such as token,private key,public key,access tree,message,attribute set,node-level,cipher-text,salting which will help in providing better security using CP-ABE algorithm in a multitenant environment(MTE)where tenants can be provided with different levels of security and achieved 92 percentage of authenticity and access-control of the data.