The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. S...The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.展开更多
Pressurized biochemical process derived from traditional activated sludge processes is an innovative technology for wastewater treatment. The main advantage of the pressurized process is that the oxygen transfer barri...Pressurized biochemical process derived from traditional activated sludge processes is an innovative technology for wastewater treatment. The main advantage of the pressurized process is that the oxygen transfer barrier can be overcome by increasing the dissolved oxygen level. In this study, high concentration pesticide wastewater was treated by pressurized activated sludge process. It was found that the removal of chemical oxygen demand (COD) increased steadily with the increase of operating pressure, aeration time, and sludge concentration. When the operation pressure was 0.30 MPa and the aeration time was 6 hr, 85.0%-92.5% COD, corresponding to an effluent COD of 230-370 mg/L, was removed from an influent COD of 2500-5000 mg/L. The obtained outlet COD concentration was lower than 350-450 mg/L for the identical process operated under the atmospheric pressure. In addition, pressurized biochemical process could produce a higher COD volumetric loading rate at 5.8-7.6 kg COD/(m^3.day), compared with 2.0-2.8 kg COD/(ma.day) using the same equipment at the atmospheric pressure. The COD concentration followed a modified Monod model with Vmax 2.31 day-1 and Ks 487 mg/L.展开更多
Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kin...Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.展开更多
The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater d...The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater due to the slaughtering process and cleaning of their facilities. Furthermore, the composition of the wastewater varies according to the type and number of animals slaughtered and the water requirements of the process. However, the slaughterhouse wastewater usually contains high levels of organics and nutrients. Several slaughterhouses in Ontario discharge their wastewater into the municipal sewer system after primary pretreatment at the meat processing plant. Therefore, due to the high-strength characteristics of the slaughterhouse effluents, an extensive treatment for a safe discharge into the environment is required. Thus, the combination of biological processes and advanced oxidation technologies for slaughterhouse wastewater treatment is evaluated in this study. Results show that the application of combined biological and advanced oxidation processes is recommended for on-site slaughterhouse wastewater treatment.展开更多
A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional ac...A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.展开更多
An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio ...An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.展开更多
Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment...Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment plant. Five control strategies are proposed, implemented and evaluated in a simulation software (West ++). The sludge blanket height and the effluent suspended solids concentration were proposed as the measured variable. The manipulated variable was the quantity of polymer added to the system. The strategies were evaluated in terms of their ability to maintain the sludge blanket height below 1.5m, their polymer requirements, their sensitivity to poor tuning and the required control action.展开更多
The study was conducted to characterize and perform laboratory-scale treatment of municipal drainage wastewater of Khulna, Bangladesh. Wastewater samples were collected from three different points of existing urban dr...The study was conducted to characterize and perform laboratory-scale treatment of municipal drainage wastewater of Khulna, Bangladesh. Wastewater samples were collected from three different points of existing urban drain outlets into the Mayur River around Khulna. Laboratory testing shows the BOD5 and COD concentration of wastewater samples varied from 57 - 226 mg/l and 320 - 435 mg/l, respectively, and the total dissolved solids ranged from 1800 - 2525 mg/l. Therefore, a laboratory-scale treatment technology was developed to treat this wastewater. Treatment technologies adopted were primary sedimentation, followed by aeration, chemical precipitation and filtration. In treated wastewater, BOD5, COD and TDS were found to be in the range of 40 - 115 mg/l, 160 - 256 mg/l and 1356 - 1500 mg/l, respectively. These test results suggest that the performance of laboratory-scale treatment plant was not adequate to fulfil the acceptable limit (ECR’97) for safe disposal into surface water bodies. Due to poor quality of effluents, modification of laboratory-scale treatment plant was made by an activated sludge process followed by granular media filtration. The final BOD5, COD TDS and TSS concentration of effluents was found to be 1.38 - 9.8 mg/l, 32 - 192 mg/l, 590 - 1667 mg/l, and 35 - 95 mg/l respectively, which satisfy ECR’97 standard limits for safe disposal into inland water bodies.展开更多
基金Project(2012AA06A202)supported by Hi-tech Research and Development Project of China
文摘The removal efficiencies of heavy metals(As, Cr, Cu, Ni, Pb and Zn) were investigated in the 17 operating municipal wastewater treatment plants(WWTPs) and compared with those in four main activated sludge processes. Significant differences of heavy metal removal efficiencies were observed among four activated sludge processes. The removal efficiency for As(75.5%) in the oxidation ditch(OD) process is significantly higher than that in the conventional activated sludge(CAS) process(38.6%) or sequencing batch reactor(SBR) process(51.4%). The mean removal efficiencies for Cu and Ni in the OD process are 90.5% and 46.7%, respectively, while low mean removal efficiencies are observed for Cu(69.9%) and Ni(16.5%), respectively, in the SBR process. The removal efficiencies for Cu and Ni in the OD process are significantly higher than those in the anaerobic-anoxic-oxic(A2-O) process. These results highlight the differences of removal efficiencies for heavy metals in different processes and should be considered when selecting a wastewater treatment process.
基金supported by the Education Bureau of Zhejiang Province (No. 20070303)the National Key Science and Technology Project:Water Pollution Control and Treatment (No. 2008ZX07101-006)
文摘Pressurized biochemical process derived from traditional activated sludge processes is an innovative technology for wastewater treatment. The main advantage of the pressurized process is that the oxygen transfer barrier can be overcome by increasing the dissolved oxygen level. In this study, high concentration pesticide wastewater was treated by pressurized activated sludge process. It was found that the removal of chemical oxygen demand (COD) increased steadily with the increase of operating pressure, aeration time, and sludge concentration. When the operation pressure was 0.30 MPa and the aeration time was 6 hr, 85.0%-92.5% COD, corresponding to an effluent COD of 230-370 mg/L, was removed from an influent COD of 2500-5000 mg/L. The obtained outlet COD concentration was lower than 350-450 mg/L for the identical process operated under the atmospheric pressure. In addition, pressurized biochemical process could produce a higher COD volumetric loading rate at 5.8-7.6 kg COD/(m^3.day), compared with 2.0-2.8 kg COD/(ma.day) using the same equipment at the atmospheric pressure. The COD concentration followed a modified Monod model with Vmax 2.31 day-1 and Ks 487 mg/L.
文摘Aerobically activated sludge processing was carried out to treat terylene artificial silk printing and dyeing wastewater (TPD wastewater) in a lab-scale experiment, focusing on the kinetics of the COD removal. The kinetics pa-rameters determined from experiment were applied to evaluate the biological treatability of wastewater. Experiments showed that COD removal could be divided into two stages, in which the ratio BOD/COD (B/C) was the key factor for stage division. At the rapid-removal stage with B/C>0.1, COD removal could be described by a zero order reaction. At the mod-erate-removal stage with B/C<0.1, COD removal could be described by a first order reaction. Then Monod equation was introduced to indicate COD removal. The reaction rate constant (K) and half saturation constant (KS) were 0.0208-0.0642 L/(gMLSS)h and 0.44-0.59 (gCOD)/L respectively at 20 C-35 C. Activation energy (Ea) was 6.05104 J/mol. By comparison of kinetic parameters, the biological treatability of TPD wastewater was superior to that of traditional textile wastewater. But COD removal from TPD-wastewater was much more difficult than that from domestic and industrial wastewater, such as papermaking, beer, phenol wastewater, etc. The expected effluent quality strongly related to un-biodegradable COD and kinetics rather than total COD. The results provide useful basis for further scaling up and efficient operation of TPD wastewater treatment.
文摘The characteristics of the slaughterhouse effluents and current wastewater treatment practices in the province of Ontario, Canada are analyzed. Meat processing plants are found to produce large amounts of wastewater due to the slaughtering process and cleaning of their facilities. Furthermore, the composition of the wastewater varies according to the type and number of animals slaughtered and the water requirements of the process. However, the slaughterhouse wastewater usually contains high levels of organics and nutrients. Several slaughterhouses in Ontario discharge their wastewater into the municipal sewer system after primary pretreatment at the meat processing plant. Therefore, due to the high-strength characteristics of the slaughterhouse effluents, an extensive treatment for a safe discharge into the environment is required. Thus, the combination of biological processes and advanced oxidation technologies for slaughterhouse wastewater treatment is evaluated in this study. Results show that the application of combined biological and advanced oxidation processes is recommended for on-site slaughterhouse wastewater treatment.
文摘A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.
文摘An anaerobic/oxic membrane bioreactor (A/O MBR) was used for treatment of dyeing wastewater from a woolen mill. COD and color of the wastewater were 54—473 mg/L and 40—400 dilution time (DT) respectively. The ratio of BOD 5/COD was less than 0.13. By the A/O MBR process, the average removal of COD, BOD 5, color and turbidity was 82%, 96%, 71% and 99%, respectively. The average COD, BOD 5, color and turbidity of effluent was 37 mg/L, 0.8 mg/L, 40 DT and 0.44 NUT respectively. The effluent COD met the local standard of reuse water in Beijing, China. The average COD volume load of the anaerobic biological tank was 0.0483 kgCOD/(m 3·d) and that of the aeration tank of the MBR was 0.3589 kgCOD/(m 3·d). The sludge load of the MBR was 0.19 kgCOD/(kg·MLSS·d) on average and the maximum of that was 0.4 kgCOD/(kg·MLSS·d). The flux of the A/O membrane bioreactor could be remained at larger than 50 L/(h·m 2·0.1MPa). The results indicated that A/O membrane bioreactor has technical feasibility for treatment of woolen mill wastewater.
文摘Control of clarifier in the activated sludge process is critical for ensuring effective wastewater treatment. This paper is to study appropriate control strategies for a clarifier in an industrial wastewater treatment plant. Five control strategies are proposed, implemented and evaluated in a simulation software (West ++). The sludge blanket height and the effluent suspended solids concentration were proposed as the measured variable. The manipulated variable was the quantity of polymer added to the system. The strategies were evaluated in terms of their ability to maintain the sludge blanket height below 1.5m, their polymer requirements, their sensitivity to poor tuning and the required control action.
文摘The study was conducted to characterize and perform laboratory-scale treatment of municipal drainage wastewater of Khulna, Bangladesh. Wastewater samples were collected from three different points of existing urban drain outlets into the Mayur River around Khulna. Laboratory testing shows the BOD5 and COD concentration of wastewater samples varied from 57 - 226 mg/l and 320 - 435 mg/l, respectively, and the total dissolved solids ranged from 1800 - 2525 mg/l. Therefore, a laboratory-scale treatment technology was developed to treat this wastewater. Treatment technologies adopted were primary sedimentation, followed by aeration, chemical precipitation and filtration. In treated wastewater, BOD5, COD and TDS were found to be in the range of 40 - 115 mg/l, 160 - 256 mg/l and 1356 - 1500 mg/l, respectively. These test results suggest that the performance of laboratory-scale treatment plant was not adequate to fulfil the acceptable limit (ECR’97) for safe disposal into surface water bodies. Due to poor quality of effluents, modification of laboratory-scale treatment plant was made by an activated sludge process followed by granular media filtration. The final BOD5, COD TDS and TSS concentration of effluents was found to be 1.38 - 9.8 mg/l, 32 - 192 mg/l, 590 - 1667 mg/l, and 35 - 95 mg/l respectively, which satisfy ECR’97 standard limits for safe disposal into inland water bodies.