期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integration of light signaling with photoperiodic flowering and circadian rhythm
1
作者 Min NI 《Cell Research》 SCIE CAS CSCD 2005年第8期559-566,共8页
Plants become photosynthetic through de-etiolation, a developmental process regulated by red/far-red light-absorbing phytochromes and blue/ultraviolet A light-absorbing cryptochromes. Genetic screens have identified i... Plants become photosynthetic through de-etiolation, a developmental process regulated by red/far-red light-absorbing phytochromes and blue/ultraviolet A light-absorbing cryptochromes. Genetic screens have identified in the last decade many far-red light signaling mutants and several red and blue light signaling mutants, suggesting the existence of distinct red, far-red, or blue light signaling pathways downstream of phytochromes and cryptochromes. However, genetic screens have also identified mutants with defective de-etiolation responses under multiple wavelengths. Thus, the opti- mal de-etiolation responses of a plant depend on coordination among the different light signaling pathways. This review intends to discuss several recently identified signaling components that have a potential role to integrate red, far-red, and blue light signalings. This review also highlights the recent discoveries on proteolytic degradation in the desensitization of light signal transmission, and the tight connection of light signaling with photoperiodic flowering and circadian rhythm. Studies on the controlling mechanisms of de-etiolation, photoperiodic flowering, and circadian rhythm have been the fascinating topics in Arabidopsis research. The knowledge obtained from Arabidopsis can be readily applied to food crops and ornamental species, and can be contributed to our general understanding of signal perception and transduction in all organisms. 展开更多
关键词 circadian regulation CRYPTOCHROMES PHOTOMORPHOGENESIS photoperiodic flowering phytochromes.
下载PDF
Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease 被引量:6
2
作者 Steven N.Austad Scott Ballinger +4 位作者 Thomas W.Buford Christy S.Carter Daniel L.Smith Jr Victor Darley-Usmar Jianhua Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第2期511-531,共21页
Aging is by far the most prominent risk factor for Alzheimer’s disease(AD),and both aging and AD are associated with apparent metabolic alterations.As developing effective therapeutic interventions to treat AD is cle... Aging is by far the most prominent risk factor for Alzheimer’s disease(AD),and both aging and AD are associated with apparent metabolic alterations.As developing effective therapeutic interventions to treat AD is clearly in urgent need,the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients,on disease pathogenesis,have been explored.There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex,microbiome,and circadian regulation.As a major part of intracellular metabolism,mitochondrial bioenergetics,mitochondrial quality-control mechanisms,and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions.This review summarizes and highlights these efforts. 展开更多
关键词 Mitochondrial DNA Mitochondrial electron transport chain Mitochondrial quality control Reactive species DAMPS Hexokinase biosynthesis pathway Diabetes circadian regulation MICROBIOME
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部