In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange <span style="font-family:Verdana;">points in the Sun-Earth three-dimensional Circular Restricted Three-Body Problem (CRTBP). T...In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange <span style="font-family:Verdana;">points in the Sun-Earth three-dimensional Circular Restricted Three-Body Problem (CRTBP). Through rewriting the CRTBP into Port-Hamiltonian framework, we are allowed to design the feedback controller through ener</span><span style="font-family:Verdana;">gy-shaping and dissipation injection. The closed-loop Hamiltonian is </span><span style="font-family:Verdana;">a candidate of the Lyapunov function to establish nonlinear stability of the designed equilibrium, which enlarges the application region of feedback controller compared with that based on linearized dynamics. Results show that th</span><span style="font-family:Verdana;">e Port-Hamiltonian</span><span style="font-family:Verdana;"> a</span><span style="font-family:Verdana;">pproach allows us to successfully stabilize the Lagrange points, where the Linear Quadratic Regulator (LQR) may fail. The feedback </span><span style="font-family:Verdana;">system based on Port-Hamiltonian approach is also robust against whit</span><span style="font-family:Verdana;">e noise in the inputs.</span>展开更多
In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Althou...In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Although the original dynamical system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Jacobi integral as the Koopman eigenfunction and using the zero velocity curve as the reference for control, we are allowed to combine well-developed Linear Quadratic Regulator (LQR) controller to design a nonlinear controller. Using this approach, we design the low thrust orbit transfer strategy for the satellite flying from the earth to the moon or from the earth to the sun.展开更多
在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的...在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的一种平动点周期轨道-Halo轨道飞行器,与二体问题轨道卫星组成扩展星座。利用两种力模型的特性差异,可以去除星座系统上的相关性,避免星座的整体旋转,从而确定星座的全部轨道状态参量。分析Halo轨道的力模型及性态特点,从系数矩阵的相关性角度讨论引进Halo轨道对定轨法矩阵正定性的改善作用,利用地月系L1平动点附近的Halo轨道与月球低轨卫星(LMO)的星间链路,在理想CRTBP框架下进行自主定轨仿真。初步验证了LMO-Halo星座定轨可行性,为开展附加平动点轨道的星座SST定轨提供了参考依据。展开更多
文摘In this paper, we use Port-Hamiltonian framework to stabilize the Lagrange <span style="font-family:Verdana;">points in the Sun-Earth three-dimensional Circular Restricted Three-Body Problem (CRTBP). Through rewriting the CRTBP into Port-Hamiltonian framework, we are allowed to design the feedback controller through ener</span><span style="font-family:Verdana;">gy-shaping and dissipation injection. The closed-loop Hamiltonian is </span><span style="font-family:Verdana;">a candidate of the Lyapunov function to establish nonlinear stability of the designed equilibrium, which enlarges the application region of feedback controller compared with that based on linearized dynamics. Results show that th</span><span style="font-family:Verdana;">e Port-Hamiltonian</span><span style="font-family:Verdana;"> a</span><span style="font-family:Verdana;">pproach allows us to successfully stabilize the Lagrange points, where the Linear Quadratic Regulator (LQR) may fail. The feedback </span><span style="font-family:Verdana;">system based on Port-Hamiltonian approach is also robust against whit</span><span style="font-family:Verdana;">e noise in the inputs.</span>
文摘In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simulate the motion of a satellite. Then we reformulate this problem with the controller into the description using Koopman eigenfunction. Although the original dynamical system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Jacobi integral as the Koopman eigenfunction and using the zero velocity curve as the reference for control, we are allowed to combine well-developed Linear Quadratic Regulator (LQR) controller to design a nonlinear controller. Using this approach, we design the low thrust orbit transfer strategy for the satellite flying from the earth to the moon or from the earth to the sun.
文摘在传统星座自主定轨中,SST(satellite to satellite tracking)可以同时提供轨道的大小、形状和星座相对方位信息,但不能确定星座的绝对定向。针对这一亏秩问题,联合圆型限制性三体模型CRTBP(circle restricted three bodyproblem)下的一种平动点周期轨道-Halo轨道飞行器,与二体问题轨道卫星组成扩展星座。利用两种力模型的特性差异,可以去除星座系统上的相关性,避免星座的整体旋转,从而确定星座的全部轨道状态参量。分析Halo轨道的力模型及性态特点,从系数矩阵的相关性角度讨论引进Halo轨道对定轨法矩阵正定性的改善作用,利用地月系L1平动点附近的Halo轨道与月球低轨卫星(LMO)的星间链路,在理想CRTBP框架下进行自主定轨仿真。初步验证了LMO-Halo星座定轨可行性,为开展附加平动点轨道的星座SST定轨提供了参考依据。