The quality of printed circuit board(PCB)micro-hole processing directly determines the stability of the inner and outer circuit connections.Micro-hole drilling technology is a typical method for PCB micro-hole process...The quality of printed circuit board(PCB)micro-hole processing directly determines the stability of the inner and outer circuit connections.Micro-hole drilling technology is a typical method for PCB micro-hole processing.The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining.To address this problem,the thrust forces and torques in PCB drilling were first modeled and analyzed,and the corresponding prediction models were established.The drilling force analysis was carried out through the micro-hole drilling experiment,the specific cutting energy under different feed rates was calculated,the influence of the size effect was clarified,and the accuracy of the prediction model was verified.The result shows that during the drilling of glass fiber cloth,changes in the material removal mechanism are induced as the feed per revolution is varied.When the feed per revolution is less than the tool edge radius,the glass fiber is not cut by the main cutting edge,but is crushed and broken.When the feed per revolution is greater than the radius of the tool edge,the glass fiber is cut by the main cutting edge.At the same time,the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling,and the error is within 10%.This method has certain practical application value in controlling PCB micro hole processing quality.展开更多
For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection ...For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection efficiency,large errors in defect identification and localization,and low versatility of detectionmethods.In order to furthermeet the requirements of high detection accuracy,real-time and interactivity required by the PCB industry in actual production life.In the current work,we improve the Youonly-look-once(YOLOv4)defect detection method to train and detect six types of PCB small target defects.Firstly,the original Cross Stage Partial Darknet53(CSPDarknet53)backbone network is preserved for PCB defect feature information extraction,and secondly,the original multi-layer cascade fusion method is changed to a single-layer feature layer structure to greatly avoid the problem of uneven distribution of priori anchor boxes size in PCB defect detection process.Then,the K-means++clustering method is used to accurately cluster the anchor boxes to obtain the required size requirements for the defect detection,which further improves the recognition and localization of small PCB defects.Finally,the improved YOLOv4 defect detection model is compared and analyzed on PCB dataset with multi-class algorithms.The experimental results show that the average detection accuracy value of the improved defect detection model reaches 99.34%,which has better detection capability,lower leakage rate and false detection rate for PCB defects in comparison with similar defect detection algorithms.展开更多
A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used t...A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used to optimize the operating parameters,in which mass ratio of Na OH-to-CME, smelting temperature and smelting time were chosen as the variables, and the conversions of amphoteric metals tin, lead, aluminum and zinc were response parameters. Second-order polynomial models of high significance and3 D response surface plots were constructed to show the relationship between the responses and the variables. Optimum area of80%-85% Pb conversion and over 95% Sn conversion was obtained by the overlaid contours at mass ratio of Na OH-to-CME of4.5-5.0, smelting temperature of 653-723 K, smelting time of 90-120 min. The models were validated experimentally in the optimum area, and the results demonstrate that these models are reliable and accurate in predicting the smelting process.展开更多
The crushing performance of printed circuit board (PCB) was studied on several crushers. The results show that PCB is a material which is difficult to crush. The crushing performance of PCB with disk crusher, especial...The crushing performance of printed circuit board (PCB) was studied on several crushers. The results show that PCB is a material which is difficult to crush. The crushing performance of PCB with disk crusher, especially vibration grinding, which has cut or impact action, excels that of jaw crusher or roller crusher. The PCB scrap is worthwhile to recycle using variety of modern characterization methods. When compared with natural resources, this material stream remains a rich precious metal and nonferrous metals. In PCB scrap, metals account for 47% of the total material composition, in which there exists 19.66% copper, 11.47% iron, 3.93% lead, 300 g/t gold and 510 kg/t silver, etc. In addition, the PCB scrap contains 27% of plastics and 26% of refractory oxides.展开更多
Thermal decomposition of waste epoxy PCBs was performed in different atmospheres (nitrogen, argon, air and vacuum) at a heating rate of 10 ℃/rain by DSC-TGA, and the pyrolysis characteristic was analyzed. The gases...Thermal decomposition of waste epoxy PCBs was performed in different atmospheres (nitrogen, argon, air and vacuum) at a heating rate of 10 ℃/rain by DSC-TGA, and the pyrolysis characteristic was analyzed. The gases volatilized from the experiment were qualitatively analyzed by TG-FTIR. Kinetics study shows that pyrolysis reaction takes place between 300 and 400℃, and the activation energies are 256, 212 and 186.2 kJ/mol in nitrogen, argon and vacuum, respectively. There are two mass-loss processes in the decomposition under air atmosphere. In the first mass-loss process, the decomposition is the main reaction, and in the second process, the oxidation is the main reaction. The activation energy of the second mass-loss process is 99.6 kJ/mol by isothermal heat-treatments. TG-FTIR analysis shows carbon dioxide, carbon monoxide, hydrogen bromide, phenol and substituent phenol are given off during the pyrolysis of waste epoxy PCBs.展开更多
The recycling of waste printed circuit board(WPCBs) is of great significance for saving resources and protecting the environment. In this study, the WPCBs were pyrolyzed by microwave and the contained valuable metals ...The recycling of waste printed circuit board(WPCBs) is of great significance for saving resources and protecting the environment. In this study, the WPCBs were pyrolyzed by microwave and the contained valuable metals Cu, Sn and Pb were recovered from the pyrolyzed WPCBs. The effect of pyrolysis temperature and time on the recovery efficiency of valuable metals was investigated. Additionally, the characterization for morphology and surface elemental distribution of pyrolysis residues was carried out to investigate the pyrolysis mechanism. The plastic fiber boards turned into black carbides, and they can be easily separated from the metals by manual. The results indicate that 91.2%, 96.1% and 94.4% of Cu, Sn and Pb can be recovered after microwave pyrolysis at 700 °C for 60 minutes. After pyrolysis, about 79.8%(mass)solid products, 11.9%(mass) oil and 8.3%(mass) gas were produced. These gas and oil can be used as fuel and raw materials of organic chemicals, respectively. This process provides an efficient and energy-saving technology for recovering valuable metals from WPCBs.展开更多
Conventional exploding foil initiator (EFI) in ignition or detonation applications hosts many performance advantages, but was hindered by the bulky, inaccurate, inefficient and expensive shortcomings. We highlight a n...Conventional exploding foil initiator (EFI) in ignition or detonation applications hosts many performance advantages, but was hindered by the bulky, inaccurate, inefficient and expensive shortcomings. We highlight a novel micro-chip exploding foil initiator (McEFI) using printed circuit board (PCB) technology. The structural parameters were determined based on energy coupling relationship at the component interfaces. Next, the prototype McEFI has been batch-fabricated using PCB technology, with a monolithic structure of 7.0 mm (l) × 4.5 mm (w) × 4.0 mm (δ). As expected, this PCB-McEFI illustrated the successful firing validations for explosives pellets. This paper has addressed the cost problem in both military munitions and civil markets wherever reliable, insensitive and timing-dependent ignition or detonation are involved.展开更多
The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres ...The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres through thermogravimetric and Gaussian fitting analyses.Furthermore,this study analyses the pyrolysis products and combustion processes of WPCBs through thermogravimetric and Fourier transform infrared analyses(TG-FTIR)and thermogravimetry-mass spectrometry(TG-MS).Results show that the pyrolysis and combustion processes of WPCBs do not constitute a single reaction,but rather an overlap of multiple reactions.The pyrolysis and combustion process of WPCBs is divided into multiple reactions by Gaussian peak fitting.The kinetic parameters of each reaction are obtained by the Coats-Redfern method.In an argon atmosphere,pyrolysis consists of the overlap of the preliminary pyrolysis of epoxy resin,pyrolysis of small organic molecules,and pyrolysis of brominated flame retardants.The thermal decomposition process in the O_(2) atmosphere is mainly divided into two reactions:brominated flame retardant combustion and epoxy combustion.This study provided the theoretical basis for pollution control,process optimization,and reactor design of WPCBs pyrolysis.展开更多
In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resi...In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resistances of four types of PCB and the changes of LED junction temperature were tested under three different working currents.The obtained results indicate that LED junction temperature can not be lowered significantly with the decreasing thermal resistance of PCB.However,PCB with low thermal resistance can be matched with smaller volume heat sink,so it is hopeful to reduce the size,weight and cost of LED lamp.展开更多
Nowadays, over 300 tons of Au are used in electronic equipment each year with other precious and strategic metals such as Ag, Pt, Pd, Cu, Nb, Ta, etc.. After the use-phase, the electronic devices become electronic was...Nowadays, over 300 tons of Au are used in electronic equipment each year with other precious and strategic metals such as Ag, Pt, Pd, Cu, Nb, Ta, etc.. After the use-phase, the electronic devices become electronic waste (e-waste); consequently it is important to consider e-waste as a secondary supply for the recovery of these metals. This paper presents the recovery ofAu, Ag, Cu and Nb from PCBs (printed circuit boards) of discarded computers using leaching column technique. The PCBs were crushed with a hammer mill until reaching a particle size between 3.33 mm to 0.43 mm, Then, it was leached with a sodium cyanide solution in a glass column using the following conditions: sodium cyanide concentration 4 g/L, flux 20 L/d kg PCBs day, pH between 10.5 to 11 and leaching time 15 days. Every day, after leaching, the pregnant solutions passed through a column with activated carbon to complete the closed loop system. The following recoveries were obtained: Au 46.6%, Ag 51.3%, Nb 47.2% and Cu 62.3%. A preliminary technical-economic study shows the feasibility to create a small-scale PCBs recycling plant. The initial investment is on the order of USS155,639, considering the recovered metals from the loaded carbon. The internal rate of return for a 10 years period IRR (internal rate of return) and NPV (net present value) estimated are 27% and US$105,926 respectively.展开更多
Physical methods show great potential and advantages on comprehensive reutilization of waste printed circuit boards (PCBs) because of lower investment and operation cost, higher efficiency and environment friendliness...Physical methods show great potential and advantages on comprehensive reutilization of waste printed circuit boards (PCBs) because of lower investment and operation cost, higher efficiency and environment friendliness. However, metals contained in fine fraction of PCBs cannot be recovered effectively by conventional equipments such as high tension electrostatic separator or shaking table. In the paper, this conundrum was resolved successfully with the enhanced Falcon SB concentrator. The separation mechanism of Falcon SB concentrator was analyzed and main factors affecting separation efficiency such as magnitude of rotation frequency of bowl, water counter pressure and slurry concentration of feed were studied and interaction of factors above also were investigated using Design-Expert software. Experiment results show that complete liberation degree and great difference of density between metals and nonmetals are suitable to recover metals from -74 μm PCBs using enhanced Falcon SB concentrator and 80.77 % integration efficiency can be achieved when slurry concentration of feed is 40 g/L with the water counter pressure of 0.01 MPa and rotation frequency of 50 Hz.展开更多
Printed circuit boards(PCBs) contain many toxic substances as well as valuable metals, e.g., lead(Pb) and tin(Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratio...Printed circuit boards(PCBs) contain many toxic substances as well as valuable metals, e.g., lead(Pb) and tin(Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb–Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400°C were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb–Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400°C, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400°C, respectively. Further, the mass ratio was observed to be 0.76 at 400°C in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.展开更多
In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmeg...In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.展开更多
This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transfo...This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).展开更多
This paper proposes a corrected method of distorted image based on adaptive control. First, the adaptive control relationship of pixel point positions between distorted image and its corrected image is given by using ...This paper proposes a corrected method of distorted image based on adaptive control. First, the adaptive control relationship of pixel point positions between distorted image and its corrected image is given by using polynomial fitting, thus control point pairs between the distorted image and its corrected image are found. Secondly, the value of both image distortion centre and polynomial coefficient is obtained with least square method, thus the relationship of each control point pairs is deduced. In the course of distortion image processing, the gray value of the corrected image is changed into integer with bilinear interpolation. Finally, the experiments are performed to correct two distorted printed circuit board images. The results are perfect and the mean square errors of residual error are tiny.展开更多
In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-lay...In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.展开更多
Vacuum pyrolysis was employed to dispose scrap brominated epoxy printed circuit boards (PCBs).Pyrolysis characteristics of waste PCBs under normal pressure and vacuum were investigated in this paper.A detailed study o...Vacuum pyrolysis was employed to dispose scrap brominated epoxy printed circuit boards (PCBs).Pyrolysis characteristics of waste PCBs under normal pressure and vacuum were investigated in this paper.A detailed study on the analysis of the elemental composition of PCBs and the pyrolysis products was performed.The thermal decomposition kinetics was measured by a thermogravimetric (TG) analyzer.The activation energy of pyrolysis under nitrogen atmosphere and vacuum were 193 kJ/mol to 206 kJ/mol and 145 kJ/mol to 165 kJ/mol,respectively.The composition of materials was analyzed by elemental analyzer.The pyrolysis products were analyzed by GC (gas chromatograph),GC-MS (chromatography and mass spectrometry) and FT-IR (Fourier transform infrared spectroscopy).Vacuum helped to increase the yield of pyrolysis oil.The liquid yield of PCBs pyrolysis at 15 kPa and normal pressure were 31.3% and 23.5%,respectively.The main components in pyrolysis oils were phenol,isopropyl-phenol,and their brominated substitution.展开更多
Printed Circuit Boards(PCBs)are very important for proper functioning of any electronic device.PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs.If P...Printed Circuit Boards(PCBs)are very important for proper functioning of any electronic device.PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs.If PCBs do not function properly then the whole electric machine might fail.So,keeping this in mind researchers are working in this field to develop error free PCBs.Initially these PCBs were examined by the human beings manually,but the human error did not give good results as sometime defected PCBs were categorized as non-defective.So,researchers and experts transformed this manual traditional examination to automated systems.Further to this research image processing and computer vision came into actions where the computer vision experts applied image processing techniques to extract the defects.But,this also did not yield good results.So,to further explore this area Machine Learning and Artificial Intelligence Techniques were applied.In this studywe have appliedDeep Neural Networks to detect the defects in the PCBS.PretrainedVGG16and Inception networkswere applied to extract the relevant features.DeepPCB dataset was used in this study,it has 1500 pairs of both defected and non-defected images.Image pre-processing and data augmentation techniques were applied to increase the training set.Convolution neural networks were applied to classify the test data.The results were compared with state-of-the art technique and it proved that the proposed methodology outperformed it.Performance evaluation metrics were applied to evaluate the proposed methodology.Precision 94.11%,Recall 89.23%,F-Measure 91.91%,and Accuracy 92.67%.展开更多
Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.Th...Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.The magnetic field was produced by permanent magnets that were assembled to make E×B drift away from, into and parallel to the sample surface, respectively.Magnetic flux density was adjusted at 120 mT, 180 mT and 240 mT respectively.By applying a negative bias voltage between the electrodes, the ...展开更多
A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was ...A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.展开更多
基金National Natural Science Foundation of China(No.51805079)Fundamental Research Funds for the Central Universities,China(No.2232021D-15)Shanghai Science and Technology Program(No.20DZ2251400)。
文摘The quality of printed circuit board(PCB)micro-hole processing directly determines the stability of the inner and outer circuit connections.Micro-hole drilling technology is a typical method for PCB micro-hole processing.The problem of optimal control of its drilling force is one of the main factors affecting the quality of micro-hole machining.To address this problem,the thrust forces and torques in PCB drilling were first modeled and analyzed,and the corresponding prediction models were established.The drilling force analysis was carried out through the micro-hole drilling experiment,the specific cutting energy under different feed rates was calculated,the influence of the size effect was clarified,and the accuracy of the prediction model was verified.The result shows that during the drilling of glass fiber cloth,changes in the material removal mechanism are induced as the feed per revolution is varied.When the feed per revolution is less than the tool edge radius,the glass fiber is not cut by the main cutting edge,but is crushed and broken.When the feed per revolution is greater than the radius of the tool edge,the glass fiber is cut by the main cutting edge.At the same time,the established analytical model can accurately reflect the influence of the size effect on the drilling torque in PCB micro-hole drilling,and the error is within 10%.This method has certain practical application value in controlling PCB micro hole processing quality.
基金This work was funded by the Natural Science Research Project of Higher Education Institutions in Jiangsu Province(No.20KJA520007)Min Zhang receives the grant and the URLs to sponsors’websites are http://jyt.jiangsu.gov.cn/.
文摘For Printed Circuit Board(PCB)surface defect detection,traditional detection methods mostly focus on template matching-based reference method and manual detections,which have the disadvantages of low defect detection efficiency,large errors in defect identification and localization,and low versatility of detectionmethods.In order to furthermeet the requirements of high detection accuracy,real-time and interactivity required by the PCB industry in actual production life.In the current work,we improve the Youonly-look-once(YOLOv4)defect detection method to train and detect six types of PCB small target defects.Firstly,the original Cross Stage Partial Darknet53(CSPDarknet53)backbone network is preserved for PCB defect feature information extraction,and secondly,the original multi-layer cascade fusion method is changed to a single-layer feature layer structure to greatly avoid the problem of uneven distribution of priori anchor boxes size in PCB defect detection process.Then,the K-means++clustering method is used to accurately cluster the anchor boxes to obtain the required size requirements for the defect detection,which further improves the recognition and localization of small PCB defects.Finally,the improved YOLOv4 defect detection model is compared and analyzed on PCB dataset with multi-class algorithms.The experimental results show that the average detection accuracy value of the improved defect detection model reaches 99.34%,which has better detection capability,lower leakage rate and false detection rate for PCB defects in comparison with similar defect detection algorithms.
基金Projects(51074190,51234009)supported by the National Natural Science Foundation of ChinaProject(2014DFA90520)supported by International Cooperation Program of Ministry of Science of ChinaProject(20110162110049)supported by the Doctoral Scientific Fund Project of the Ministry of Education of China
文摘A novel low-temperature alkaline smelting process is proposed to convert and separate amphoteric metals in crushed metal enrichment originated from waste printed circuit boards. The central composite design was used to optimize the operating parameters,in which mass ratio of Na OH-to-CME, smelting temperature and smelting time were chosen as the variables, and the conversions of amphoteric metals tin, lead, aluminum and zinc were response parameters. Second-order polynomial models of high significance and3 D response surface plots were constructed to show the relationship between the responses and the variables. Optimum area of80%-85% Pb conversion and over 95% Sn conversion was obtained by the overlaid contours at mass ratio of Na OH-to-CME of4.5-5.0, smelting temperature of 653-723 K, smelting time of 90-120 min. The models were validated experimentally in the optimum area, and the results demonstrate that these models are reliable and accurate in predicting the smelting process.
文摘The crushing performance of printed circuit board (PCB) was studied on several crushers. The results show that PCB is a material which is difficult to crush. The crushing performance of PCB with disk crusher, especially vibration grinding, which has cut or impact action, excels that of jaw crusher or roller crusher. The PCB scrap is worthwhile to recycle using variety of modern characterization methods. When compared with natural resources, this material stream remains a rich precious metal and nonferrous metals. In PCB scrap, metals account for 47% of the total material composition, in which there exists 19.66% copper, 11.47% iron, 3.93% lead, 300 g/t gold and 510 kg/t silver, etc. In addition, the PCB scrap contains 27% of plastics and 26% of refractory oxides.
基金Project(2006AA06Z375) supported by the National High-tech Research and Development Program of China
文摘Thermal decomposition of waste epoxy PCBs was performed in different atmospheres (nitrogen, argon, air and vacuum) at a heating rate of 10 ℃/rain by DSC-TGA, and the pyrolysis characteristic was analyzed. The gases volatilized from the experiment were qualitatively analyzed by TG-FTIR. Kinetics study shows that pyrolysis reaction takes place between 300 and 400℃, and the activation energies are 256, 212 and 186.2 kJ/mol in nitrogen, argon and vacuum, respectively. There are two mass-loss processes in the decomposition under air atmosphere. In the first mass-loss process, the decomposition is the main reaction, and in the second process, the oxidation is the main reaction. The activation energy of the second mass-loss process is 99.6 kJ/mol by isothermal heat-treatments. TG-FTIR analysis shows carbon dioxide, carbon monoxide, hydrogen bromide, phenol and substituent phenol are given off during the pyrolysis of waste epoxy PCBs.
基金supported by the National Key Research and Development Program of China (2019YFC1908404)the National Natural Science Foundation of China (Nos. 51834008, 51874040,52034002)+1 种基金the Guangxi Innovation-Driven Development Project(AA18242042-1)the Fundamental Research Funds for the Central Universities (FRF-TP-18-020A3)。
文摘The recycling of waste printed circuit board(WPCBs) is of great significance for saving resources and protecting the environment. In this study, the WPCBs were pyrolyzed by microwave and the contained valuable metals Cu, Sn and Pb were recovered from the pyrolyzed WPCBs. The effect of pyrolysis temperature and time on the recovery efficiency of valuable metals was investigated. Additionally, the characterization for morphology and surface elemental distribution of pyrolysis residues was carried out to investigate the pyrolysis mechanism. The plastic fiber boards turned into black carbides, and they can be easily separated from the metals by manual. The results indicate that 91.2%, 96.1% and 94.4% of Cu, Sn and Pb can be recovered after microwave pyrolysis at 700 °C for 60 minutes. After pyrolysis, about 79.8%(mass)solid products, 11.9%(mass) oil and 8.3%(mass) gas were produced. These gas and oil can be used as fuel and raw materials of organic chemicals, respectively. This process provides an efficient and energy-saving technology for recovering valuable metals from WPCBs.
基金We gratefully acknowledge the support from National Natural Science Foundation of China(Grant No.22075145).
文摘Conventional exploding foil initiator (EFI) in ignition or detonation applications hosts many performance advantages, but was hindered by the bulky, inaccurate, inefficient and expensive shortcomings. We highlight a novel micro-chip exploding foil initiator (McEFI) using printed circuit board (PCB) technology. The structural parameters were determined based on energy coupling relationship at the component interfaces. Next, the prototype McEFI has been batch-fabricated using PCB technology, with a monolithic structure of 7.0 mm (l) × 4.5 mm (w) × 4.0 mm (δ). As expected, this PCB-McEFI illustrated the successful firing validations for explosives pellets. This paper has addressed the cost problem in both military munitions and civil markets wherever reliable, insensitive and timing-dependent ignition or detonation are involved.
基金financially supported by the National Key R&D Program of China(Nos.2019YFC1908400 and 2019YFC1907405)the National Natural Science Foundation of China(Nos.51904124,51804139,52004111 and 52074136)+2 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(Nos.20212BCJL23052 and 20212BCJ23007)the Distinguished Professor Program of Jinggang Scholars,China Institutions of Higher Learning Jiangxi Province,the Science and Technology Research Project of the Jiangxi Provincial Department of Education(No.gjj170507)the Science Research Foundation of Jiangxi University of Science and Technology(No.jxxjbs 17046)。
文摘The effective recycling of waste printed circuit boards(WPCBs)can conserve resources and reduce environmental pollution.This study explores the pyrolysis and combustion characteristics of WPCBs in various atmospheres through thermogravimetric and Gaussian fitting analyses.Furthermore,this study analyses the pyrolysis products and combustion processes of WPCBs through thermogravimetric and Fourier transform infrared analyses(TG-FTIR)and thermogravimetry-mass spectrometry(TG-MS).Results show that the pyrolysis and combustion processes of WPCBs do not constitute a single reaction,but rather an overlap of multiple reactions.The pyrolysis and combustion process of WPCBs is divided into multiple reactions by Gaussian peak fitting.The kinetic parameters of each reaction are obtained by the Coats-Redfern method.In an argon atmosphere,pyrolysis consists of the overlap of the preliminary pyrolysis of epoxy resin,pyrolysis of small organic molecules,and pyrolysis of brominated flame retardants.The thermal decomposition process in the O_(2) atmosphere is mainly divided into two reactions:brominated flame retardant combustion and epoxy combustion.This study provided the theoretical basis for pollution control,process optimization,and reactor design of WPCBs pyrolysis.
基金Special Fund Project of Science and Technology Innovation of Dongli District(21090302)Research Projectof Applied Basic and Front Technologies of Tianjin(10JCZDJC15400)
文摘In order to study the role of printed circuit board(PCB)in high-power LED heat dissipation,a simple model of high-power LED lamp was designed.According to this lamp model,some thermal performances such as thermal resistances of four types of PCB and the changes of LED junction temperature were tested under three different working currents.The obtained results indicate that LED junction temperature can not be lowered significantly with the decreasing thermal resistance of PCB.However,PCB with low thermal resistance can be matched with smaller volume heat sink,so it is hopeful to reduce the size,weight and cost of LED lamp.
文摘Nowadays, over 300 tons of Au are used in electronic equipment each year with other precious and strategic metals such as Ag, Pt, Pd, Cu, Nb, Ta, etc.. After the use-phase, the electronic devices become electronic waste (e-waste); consequently it is important to consider e-waste as a secondary supply for the recovery of these metals. This paper presents the recovery ofAu, Ag, Cu and Nb from PCBs (printed circuit boards) of discarded computers using leaching column technique. The PCBs were crushed with a hammer mill until reaching a particle size between 3.33 mm to 0.43 mm, Then, it was leached with a sodium cyanide solution in a glass column using the following conditions: sodium cyanide concentration 4 g/L, flux 20 L/d kg PCBs day, pH between 10.5 to 11 and leaching time 15 days. Every day, after leaching, the pregnant solutions passed through a column with activated carbon to complete the closed loop system. The following recoveries were obtained: Au 46.6%, Ag 51.3%, Nb 47.2% and Cu 62.3%. A preliminary technical-economic study shows the feasibility to create a small-scale PCBs recycling plant. The initial investment is on the order of USS155,639, considering the recovered metals from the loaded carbon. The internal rate of return for a 10 years period IRR (internal rate of return) and NPV (net present value) estimated are 27% and US$105,926 respectively.
基金Project 200360290015 supported by the Doctoral Program of Higher Education, China Ministry of Education
文摘Physical methods show great potential and advantages on comprehensive reutilization of waste printed circuit boards (PCBs) because of lower investment and operation cost, higher efficiency and environment friendliness. However, metals contained in fine fraction of PCBs cannot be recovered effectively by conventional equipments such as high tension electrostatic separator or shaking table. In the paper, this conundrum was resolved successfully with the enhanced Falcon SB concentrator. The separation mechanism of Falcon SB concentrator was analyzed and main factors affecting separation efficiency such as magnitude of rotation frequency of bowl, water counter pressure and slurry concentration of feed were studied and interaction of factors above also were investigated using Design-Expert software. Experiment results show that complete liberation degree and great difference of density between metals and nonmetals are suitable to recover metals from -74 μm PCBs using enhanced Falcon SB concentrator and 80.77 % integration efficiency can be achieved when slurry concentration of feed is 40 g/L with the water counter pressure of 0.01 MPa and rotation frequency of 50 Hz.
基金financially supported by the National Natural Science Foundation of China (No. 51704022)
文摘Printed circuit boards(PCBs) contain many toxic substances as well as valuable metals, e.g., lead(Pb) and tin(Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb–Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400°C were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb–Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400°C, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400°C, respectively. Further, the mass ratio was observed to be 0.76 at 400°C in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.
基金Project(041010) supported by Start-Up Foundation of Northwest University,ChinaProject(UIT/39) supported by University-Industry Collaboration Program from the Innovation and Technology Fund of Hong Kong,China
文摘In order to utilize integrated passive technology in printed circuit boards (PCBs), manufacturing processing for integrated resistors by lamination method was investigated. Integrated resistors fabricated from Ohmega technologies in the experiment were 1 408 pieces per panel with four different patterns A, B, C and D and four resistance values of 25, 50, 75 and 100 fL Six panel per batch and four batches were performed totally. The testing was done for 960 pieces of integrated resistors randomly selected with the same size. The value distribution ranges and the relative standard deviation (RSD) show that the scatter degree of the resistance decreases with the resistor size increasing and/or with the resistance increasing. Patterns D with resistance of 75 and 100% for four patterns have the resistance value variances less than 10%. Patterns C and D with resistance of 100 Ω have the manufacturing tolerance less than 10%. The process capabilities are from about 0.6 to 1.6 for the designed testing patterns, which shows that the integrated resistors fabricated have the potential to be used in multilayer PCBs in the future.
基金supported by Science and Technology Project of Fujian Provincial Department of Education under contract JAT170917Youth Science and Research Foundation of Chengyi College Jimei University under contract C16005.
文摘This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).
基金Project supported by the Research Foundation of the State Key Laboratory,China(Grant No.9140C1406020708)the Program Research Foundation of Hunan Province Science-Technology Department,China(Grant No.2009FJ3187)the 11th Five Year Plan for Key Construction Academic Subject(Optics)of Hunan Province,China(Grant No.06GXCD02)
文摘This paper proposes a corrected method of distorted image based on adaptive control. First, the adaptive control relationship of pixel point positions between distorted image and its corrected image is given by using polynomial fitting, thus control point pairs between the distorted image and its corrected image are found. Secondly, the value of both image distortion centre and polynomial coefficient is obtained with least square method, thus the relationship of each control point pairs is deduced. In the course of distortion image processing, the gray value of the corrected image is changed into integer with bilinear interpolation. Finally, the experiments are performed to correct two distorted printed circuit board images. The results are perfect and the mean square errors of residual error are tiny.
基金the support from Ministry of Science and Technology,Taiwan,R.O.C.,through grant MOST-105-2221-E-007-031-MY3.
文摘In this study,the deformation and stress distribution of printed circuit board(PCB)with different thickness and composite materials under a shock loading were analyzed by the finite element analysis.The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first.Moreover,the finite element models of the PCB with different thickness by stacking various number of layers were discussed.In addition to changing thickness,the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement.The non-linear material property of copper foil was considered in the analysis.The results indicated that a thicker PCB has lower stress in the copper foil in PCBs under the shock loading.The stress difference between the thicker PCB(2.6 mm)and thinner PCB(0.6 mm)is around 5%.Using woven carbon fiber/epoxy as core material could lower the stress of copper foil around 6.6%under the shock loading 1500 g for the PCB with 0.6 mm thickness.On the other hand,the stress level is under the failure strength of PCBs with carbon fiber/epoxy core layers and thickness 2.6 mm when the peak acceleration changes from 1500 g to 5000 g.This study could provide a reference for the design and proper applications of the PCB with different thickness and composite materials.
基金Funded by the National High Technology Research and Development Key Program of China (No. 2006AA06Z375)
文摘Vacuum pyrolysis was employed to dispose scrap brominated epoxy printed circuit boards (PCBs).Pyrolysis characteristics of waste PCBs under normal pressure and vacuum were investigated in this paper.A detailed study on the analysis of the elemental composition of PCBs and the pyrolysis products was performed.The thermal decomposition kinetics was measured by a thermogravimetric (TG) analyzer.The activation energy of pyrolysis under nitrogen atmosphere and vacuum were 193 kJ/mol to 206 kJ/mol and 145 kJ/mol to 165 kJ/mol,respectively.The composition of materials was analyzed by elemental analyzer.The pyrolysis products were analyzed by GC (gas chromatograph),GC-MS (chromatography and mass spectrometry) and FT-IR (Fourier transform infrared spectroscopy).Vacuum helped to increase the yield of pyrolysis oil.The liquid yield of PCBs pyrolysis at 15 kPa and normal pressure were 31.3% and 23.5%,respectively.The main components in pyrolysis oils were phenol,isopropyl-phenol,and their brominated substitution.
基金The author would like to thank Deanship of Scientific Research at Shaqra University for their support to carry this work.
文摘Printed Circuit Boards(PCBs)are very important for proper functioning of any electronic device.PCBs are installed in almost all the electronic device and their functionality is dependent on the perfection of PCBs.If PCBs do not function properly then the whole electric machine might fail.So,keeping this in mind researchers are working in this field to develop error free PCBs.Initially these PCBs were examined by the human beings manually,but the human error did not give good results as sometime defected PCBs were categorized as non-defective.So,researchers and experts transformed this manual traditional examination to automated systems.Further to this research image processing and computer vision came into actions where the computer vision experts applied image processing techniques to extract the defects.But,this also did not yield good results.So,to further explore this area Machine Learning and Artificial Intelligence Techniques were applied.In this studywe have appliedDeep Neural Networks to detect the defects in the PCBS.PretrainedVGG16and Inception networkswere applied to extract the relevant features.DeepPCB dataset was used in this study,it has 1500 pairs of both defected and non-defected images.Image pre-processing and data augmentation techniques were applied to increase the training set.Convolution neural networks were applied to classify the test data.The results were compared with state-of-the art technique and it proved that the proposed methodology outperformed it.Performance evaluation metrics were applied to evaluate the proposed methodology.Precision 94.11%,Recall 89.23%,F-Measure 91.91%,and Accuracy 92.67%.
基金Supported by National Natural Science Foundation of China (No.50777048)
文摘Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.The magnetic field was produced by permanent magnets that were assembled to make E×B drift away from, into and parallel to the sample surface, respectively.Magnetic flux density was adjusted at 120 mT, 180 mT and 240 mT respectively.By applying a negative bias voltage between the electrodes, the ...
基金the Shanghai EXPO Special Project from the Ministry of Science and Technology of China under the Grant No. 2004BA908B02
文摘A mechanical separation process was developed for recovering metals from printed circuit board(PCB) scrap;it included three steps:impact crushing,sieving and fluidization separation.The mechanism of the technique was based on the difference in the crushabilities of metallic and nonmetallic materials in the PCBs that led to the concentrated distribution of metals in particles of larger sizes and nonmetals mostly in particles of smaller sizes.It was found that crushed PCB particles from 0.125 mm to 1.000 mm contained about 80% of metals in the PCBs.Metals acquired satisfactory liberation in particles smaller than 0.800 mm.The crushed PCB particles were sieved into fractions of different size ranges.Each fraction separately went through a gas-solid fluidized bed operating at a selected optimal gas velocity for the specific size range.Approximately 95% of metals in printed circuit board particles from 0.125 mm to 0.800 mm was recovered by the gas-fluidized bed separator at the selected optimal gas velocity.However,separation of metals from particles smaller than 0.125 mm was not satisfactory.Further study is needed on metal recovery from fine particles.