The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water cost...The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.展开更多
A better understanding of China’s modernization presents an insight into a changing world.AS China has developed,so too has the global economy.For the past 200 years or so,the structure of the global economy was domi...A better understanding of China’s modernization presents an insight into a changing world.AS China has developed,so too has the global economy.For the past 200 years or so,the structure of the global economy was dominated first by the British empire,and more recently by the U.S.as the global economic hegemon.This system of center-and-peripheries is now decentering,with a diversification of networks and connections creating a multinodal system of value growth and circulation.展开更多
Based on the daily meteorological data of Bengbu City during 1981-2020,the changing characteristics of three elements needed for the calculation of the comfort index of human body(CIHB)were discussed,and daily CIHB wa...Based on the daily meteorological data of Bengbu City during 1981-2020,the changing characteristics of three elements needed for the calculation of the comfort index of human body(CIHB)were discussed,and daily CIHB was classified and discussed.The results show that from 1981 to 2020,annual average temperature tended to increase significantly.Annual average wind speed and relative humidity showed a decreasing trend before 2011 but an increasing trend after 2011.The duration of the four seasons in Bengbu City mainly rose in spring,reduced in winter,declined first and then increased in summer,and rose first and then decreased in autumn.As CIHB was at grades 1 and 9(the most uncomfortable),the three factors had different effects on them.For cold weather,the influence of relative humidity and wind speed on CIHB can not be ignored besides temperature.In hot weather,the influence of temperature was dominant,and the change of annual average temperature could well correspond to the change in the number of very hot days.In the context of climate warming,the number of cold days tended to decline generally,but it was larger in the years with fewer very cold days.Under the background of climate warming,there was no obvious change in the number of days of the overall comfort of human body.The number of hot days was closely related to the duration of summer,and the number of days of grade 8 rose significantly in the years with an increase in the duration of summer.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Objective:To determine whether cervical ultrasonography,magnetic resonance imaging(MRI),and magnetic resonance angiography(MRA)are useful in the differential diagnosis of etiology and understanding the pathophysiology...Objective:To determine whether cervical ultrasonography,magnetic resonance imaging(MRI),and magnetic resonance angiography(MRA)are useful in the differential diagnosis of etiology and understanding the pathophysiology in cases of apogeotropic direction-changing positional nystagmus(DCPN).Methods:Thirty patients with apogeotropic DCPN were classified into 11 cases of central disease,seven cases of mixed central and peripheral disease,and 12 cases of peripheral disease by differential diagnosis based on various balance function,neuro-otological,and imaging tests.Cervical ultrasonography using the cervical rotation method and MRI and MRA of the head and neck were performed in most patients with apogeotropic DCPN.We reviewed the presence of abnormal imaging findings according to the disease etiology.Results:Of the 30 patients with apogeotropic DCPN,23 showed vascular abnormalities or central lesions on imaging.Vascular lesions were found in six of the 12 patients with peripheral disease.Cervical ultrasonography with cervical rotation detected blood flow disturbance in the vertebral artery in eight patients in whom the disturbance could not be detected by MRI or MRA of the head and neck.Discussion:We hypothesize that the causative disease of apogeotropic DCPN may be strongly associated with circulatory insufficiency of the vertebrobasilar and carotid arteries,and that impaired blood flow in these vessels may affect peripheral vestibular and central function.In patients with apogeotropic DCPN,examinations of vestibular function,central nervous system symptoms,and brain hemodynamics are valuable for differential diagnosis.展开更多
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop...Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.展开更多
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un...The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.展开更多
Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause...Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause immense devastation resulting in the loss of lives and property. This paper discusses the risk of flooding in Kenya as one of the many outcomes of climate change in the face of urgency to adapt Kenya’s built environment to flooding which is likely to continue to prevail in the decades as a result of the looming climate change. It also sought to evaluate the physical, traumatic, and psychological effects on communities affected by flood events. This cross-sectional survey, both qualitative and quantitative in nature, executed between 13<sup>th</sup> January 2021 and 14<sup>th</sup> July 2021 with 132 respondents along the western shoreline of Lake Baringo, near Marigat Town focused on the flood levels, structures, their materials, and quantities. Results show that the area covered by Lake Baringo increased by 18% from 236 km<sup>2</sup> to 278 km<sup>2</sup>. The depth of floods ranged from 0.3 m to 1.2 m and exceeded 1.6 m during heavy rainfall up to 3.2 m with homes completely submerged by the lake. Flooding was experienced more by residents living in low areas nearer to the shoreline of the lake as compared to those living on higher grounds. 100% of the structures didn’t have the architectural technology to withstand the impacts of flooding with 59% of housing made of corrugated iron sheets both on wall and roofing, 22% of mud houses roofed with either corrugated iron sheets, 10% being timber with thatch and only 8% stoned walled houses. This predisposed all the residents to the harmful impacts of flooding. Piled sandbags by locals as a mitigating measure proved inadequate to withstand the forces of the rising waters. Flood walls were built around local lodges near the lake but the rising water level quickly breached these defences. The study recommends that county and national governing authorities develop flood adaptation strategies for resilience. These include long-term land-use planning, the establishment of early warning systems, evacuation plans, identification of vulnerable or high-risk populations, measures to ensure water quality, sanitation, and hygiene. Flood-resilient architecture including stilt and floating houses that mechanically rise and fall with respect to the highest water mark are recommended during flood events. Bridges on swollen rivers and resilient construction materials like reinforced concrete are to be used for sustainable development for flood risk adaptation.展开更多
This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as w...This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as well as relate any negative links that each plays concerning human activity, health, and interaction with the environment. It will include an in-depth analysis of what the proliferation of such toxic gases indicates about human production and causality, plus reflect on any current attempts being made to improve the effects of these pollutants on the environment. This examination will also inspect three NASA missions, i.e., MOPITT/Terra, AIRS/Aqua, and OMI/Aura, the aim of which, among many other tasks, is to detect pollutants within the Earth’s various spheres, as well as analyze weather anomalies, improve prediction methodology, and chronicle meteorological patterns for future study. It will also cover some of the goals, engineering breakthroughs, and in one case, the limitations, of these three satellite missions. Finally, it should be noted that in all stages of this discussion, the author’s main aim will be to focus on the positives that need to be implemented in order to improve the current situations that both anthropogenic and natural disasters have created for the planet.展开更多
Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time windo...Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
Climate change can have significant impacts on crop yields and food security.This study assessed the linkages between climate change and crop yields to obtain a better understanding on the drivers of food security.The...Climate change can have significant impacts on crop yields and food security.This study assessed the linkages between climate change and crop yields to obtain a better understanding on the drivers of food security.The study was conducted in Pasagaun village of Lamjung District in Nepal,where household surveys and focus group discussions(FGDs)were used to collect data including crop cultivation,irrigation facilities,and adaptation strategies.Moreover,climate data(temperature and precipitation)from 1992 to 2020 were collected from the Khudi Bazar meteorological station and crop yield data were obtained from the Agri-Business Promotion and Statistics Division.Trend analysis of temperature and precipitation was conducted using MannKendall trend test and Sen’s slope method,and the results showed an increase in the average temperature of approximately 0.02℃/a and a decrease in the annual precipitation of 9.84 mm/a.The cultivation of traditional varieties of rice and foxtail millet(Kaguno)has vanished.Although,there was no significant impact of the maximum temperature on the yield of rice and maize,the regression analysis revealed that there are negative relationships between rice yield and annual minimum temperature(r=-0.44),between millet yield and annual precipitation(r=-0.30),and between maize yield and annual minimum temperature(r=-0.31),as well as positive relationship between rice yield and annual precipitation(r=0.16).Moreover,average rice yield and millet yield have decreased by 27.0% and 57.0% in 2000-2020,respectively.Despite other reasons for the decrease in crop yield such as the lack of irrigation facilities,out-migration of farmer,and increased pest infestation,respondents have adopted adaptation strategies(for example,shifts in cultivation time and changes in crop types)to minimize the impacts of climate change.More investigation and community-based farming education are needed to understand and alleviate the harmful impacts of climate change on crop yield,as effective adaptation coping strategies are still insufficient.This study provides insights into the adaptation strategies that are necessary to keep food security in the face of climate change.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the...Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms,research research on the implementation of quantum circuits is essential.This paper presents a new framework to construct quantum circuits of substitution boxes(S-boxes)using system modeling.We model the quantum circuits of S-boxes using two layers:Toffoli and linear layers.We generate vector spaces based on the values of qubits used in the linear layers and apply them to find quantum circuits.The framework finds the circuit bymatching elements of vector spaces generated fromthe input and output of a given S-box,using the forward search or themeet-in-the-middle strategy.We developed a tool to apply this framework to 4-bit S-boxes.While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented with four qubits,the proposed tool achieves the circuits with five qubits.The proposed tool can find quantum circuits of 4-bit odd permutations based on the controlled NOT,NOT,and Toffoli gates,whereas LIGHTER-R is unable to perform this task in the same environment.We expect this technique to become a critical step toward optimizing S-box quantum circuits.展开更多
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi...Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.展开更多
The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic rep...The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.展开更多
基金supported by the Indian Council of Agricultural Research-International Rice Research Institute Collaborative Project, India (Grant No. OXX4928)。
文摘The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.
文摘A better understanding of China’s modernization presents an insight into a changing world.AS China has developed,so too has the global economy.For the past 200 years or so,the structure of the global economy was dominated first by the British empire,and more recently by the U.S.as the global economic hegemon.This system of center-and-peripheries is now decentering,with a diversification of networks and connections creating a multinodal system of value growth and circulation.
文摘Based on the daily meteorological data of Bengbu City during 1981-2020,the changing characteristics of three elements needed for the calculation of the comfort index of human body(CIHB)were discussed,and daily CIHB was classified and discussed.The results show that from 1981 to 2020,annual average temperature tended to increase significantly.Annual average wind speed and relative humidity showed a decreasing trend before 2011 but an increasing trend after 2011.The duration of the four seasons in Bengbu City mainly rose in spring,reduced in winter,declined first and then increased in summer,and rose first and then decreased in autumn.As CIHB was at grades 1 and 9(the most uncomfortable),the three factors had different effects on them.For cold weather,the influence of relative humidity and wind speed on CIHB can not be ignored besides temperature.In hot weather,the influence of temperature was dominant,and the change of annual average temperature could well correspond to the change in the number of very hot days.In the context of climate warming,the number of cold days tended to decline generally,but it was larger in the years with fewer very cold days.Under the background of climate warming,there was no obvious change in the number of days of the overall comfort of human body.The number of hot days was closely related to the duration of summer,and the number of days of grade 8 rose significantly in the years with an increase in the duration of summer.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘Objective:To determine whether cervical ultrasonography,magnetic resonance imaging(MRI),and magnetic resonance angiography(MRA)are useful in the differential diagnosis of etiology and understanding the pathophysiology in cases of apogeotropic direction-changing positional nystagmus(DCPN).Methods:Thirty patients with apogeotropic DCPN were classified into 11 cases of central disease,seven cases of mixed central and peripheral disease,and 12 cases of peripheral disease by differential diagnosis based on various balance function,neuro-otological,and imaging tests.Cervical ultrasonography using the cervical rotation method and MRI and MRA of the head and neck were performed in most patients with apogeotropic DCPN.We reviewed the presence of abnormal imaging findings according to the disease etiology.Results:Of the 30 patients with apogeotropic DCPN,23 showed vascular abnormalities or central lesions on imaging.Vascular lesions were found in six of the 12 patients with peripheral disease.Cervical ultrasonography with cervical rotation detected blood flow disturbance in the vertebral artery in eight patients in whom the disturbance could not be detected by MRI or MRA of the head and neck.Discussion:We hypothesize that the causative disease of apogeotropic DCPN may be strongly associated with circulatory insufficiency of the vertebrobasilar and carotid arteries,and that impaired blood flow in these vessels may affect peripheral vestibular and central function.In patients with apogeotropic DCPN,examinations of vestibular function,central nervous system symptoms,and brain hemodynamics are valuable for differential diagnosis.
基金supported by the National Centre for Atmospheric Science through the NERC National Capability International Programmes Award (NE/ X006263/1)the Global Challenges Research Fund, via Atmospheric hazard in developing Countries: Risk assessment and Early Warning (ACREW) (NE/R000034/1)the Natural Environmental Research Council and the Department for Foreign International Development through the Sat WIN-ALERT project (NE/ R014116/1)。
文摘Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.
基金partially supported by the National Natural Science Foundation of China (Grant No.31772285)the National Key R&D Program Project Funding (Grant No.2018YFD1000607)Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)。
文摘The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.
文摘Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause immense devastation resulting in the loss of lives and property. This paper discusses the risk of flooding in Kenya as one of the many outcomes of climate change in the face of urgency to adapt Kenya’s built environment to flooding which is likely to continue to prevail in the decades as a result of the looming climate change. It also sought to evaluate the physical, traumatic, and psychological effects on communities affected by flood events. This cross-sectional survey, both qualitative and quantitative in nature, executed between 13<sup>th</sup> January 2021 and 14<sup>th</sup> July 2021 with 132 respondents along the western shoreline of Lake Baringo, near Marigat Town focused on the flood levels, structures, their materials, and quantities. Results show that the area covered by Lake Baringo increased by 18% from 236 km<sup>2</sup> to 278 km<sup>2</sup>. The depth of floods ranged from 0.3 m to 1.2 m and exceeded 1.6 m during heavy rainfall up to 3.2 m with homes completely submerged by the lake. Flooding was experienced more by residents living in low areas nearer to the shoreline of the lake as compared to those living on higher grounds. 100% of the structures didn’t have the architectural technology to withstand the impacts of flooding with 59% of housing made of corrugated iron sheets both on wall and roofing, 22% of mud houses roofed with either corrugated iron sheets, 10% being timber with thatch and only 8% stoned walled houses. This predisposed all the residents to the harmful impacts of flooding. Piled sandbags by locals as a mitigating measure proved inadequate to withstand the forces of the rising waters. Flood walls were built around local lodges near the lake but the rising water level quickly breached these defences. The study recommends that county and national governing authorities develop flood adaptation strategies for resilience. These include long-term land-use planning, the establishment of early warning systems, evacuation plans, identification of vulnerable or high-risk populations, measures to ensure water quality, sanitation, and hygiene. Flood-resilient architecture including stilt and floating houses that mechanically rise and fall with respect to the highest water mark are recommended during flood events. Bridges on swollen rivers and resilient construction materials like reinforced concrete are to be used for sustainable development for flood risk adaptation.
文摘This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as well as relate any negative links that each plays concerning human activity, health, and interaction with the environment. It will include an in-depth analysis of what the proliferation of such toxic gases indicates about human production and causality, plus reflect on any current attempts being made to improve the effects of these pollutants on the environment. This examination will also inspect three NASA missions, i.e., MOPITT/Terra, AIRS/Aqua, and OMI/Aura, the aim of which, among many other tasks, is to detect pollutants within the Earth’s various spheres, as well as analyze weather anomalies, improve prediction methodology, and chronicle meteorological patterns for future study. It will also cover some of the goals, engineering breakthroughs, and in one case, the limitations, of these three satellite missions. Finally, it should be noted that in all stages of this discussion, the author’s main aim will be to focus on the positives that need to be implemented in order to improve the current situations that both anthropogenic and natural disasters have created for the planet.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFC1508001)the National Natural Science Foundation of China(Grant No.51709073)the Fundamental Research Funds for the Central Universities of China(Grant No.B220202031).
文摘Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金the funding provided by the NORHED SUNREM Himalayan Project(QZA-0485NPL13/0022)。
文摘Climate change can have significant impacts on crop yields and food security.This study assessed the linkages between climate change and crop yields to obtain a better understanding on the drivers of food security.The study was conducted in Pasagaun village of Lamjung District in Nepal,where household surveys and focus group discussions(FGDs)were used to collect data including crop cultivation,irrigation facilities,and adaptation strategies.Moreover,climate data(temperature and precipitation)from 1992 to 2020 were collected from the Khudi Bazar meteorological station and crop yield data were obtained from the Agri-Business Promotion and Statistics Division.Trend analysis of temperature and precipitation was conducted using MannKendall trend test and Sen’s slope method,and the results showed an increase in the average temperature of approximately 0.02℃/a and a decrease in the annual precipitation of 9.84 mm/a.The cultivation of traditional varieties of rice and foxtail millet(Kaguno)has vanished.Although,there was no significant impact of the maximum temperature on the yield of rice and maize,the regression analysis revealed that there are negative relationships between rice yield and annual minimum temperature(r=-0.44),between millet yield and annual precipitation(r=-0.30),and between maize yield and annual minimum temperature(r=-0.31),as well as positive relationship between rice yield and annual precipitation(r=0.16).Moreover,average rice yield and millet yield have decreased by 27.0% and 57.0% in 2000-2020,respectively.Despite other reasons for the decrease in crop yield such as the lack of irrigation facilities,out-migration of farmer,and increased pest infestation,respondents have adopted adaptation strategies(for example,shifts in cultivation time and changes in crop types)to minimize the impacts of climate change.More investigation and community-based farming education are needed to understand and alleviate the harmful impacts of climate change on crop yield,as effective adaptation coping strategies are still insufficient.This study provides insights into the adaptation strategies that are necessary to keep food security in the face of climate change.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ITRC(Information Technology Research Center)support program(IITP-2024-RS-2022-00164800)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms,research research on the implementation of quantum circuits is essential.This paper presents a new framework to construct quantum circuits of substitution boxes(S-boxes)using system modeling.We model the quantum circuits of S-boxes using two layers:Toffoli and linear layers.We generate vector spaces based on the values of qubits used in the linear layers and apply them to find quantum circuits.The framework finds the circuit bymatching elements of vector spaces generated fromthe input and output of a given S-box,using the forward search or themeet-in-the-middle strategy.We developed a tool to apply this framework to 4-bit S-boxes.While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented with four qubits,the proposed tool achieves the circuits with five qubits.The proposed tool can find quantum circuits of 4-bit odd permutations based on the controlled NOT,NOT,and Toffoli gates,whereas LIGHTER-R is unable to perform this task in the same environment.We expect this technique to become a critical step toward optimizing S-box quantum circuits.
基金supported by NIH/NIMH grant R01MH111619(to SQ),R21AG078700(to SQ)Institute of Mental Health Research(IMHR,Level 1 funding,to SQ and DF)institution startup fund from The University of Arizona(to SQ)。
文摘Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
文摘The objective in this presentation is to introduce some of the unique properties and applications of nullors in active circuit analysis and designs. The emphasis is to discuss the role nullors can play in symbolic representation of transfer functions. To show this we adopt the topological platform for the circuit analysis and use a recently developed Admittance Method (AM) to achieve the Sum of Tree Products (STP), replacing the determinant and cofactors of the Nodal Admittance Matrix (NAM) of the circuit. To construct a transfer function, we start with a given active circuit and convert all its controlled sources and I/O-ports to nullors. Now, with a solid nullor circuit (passive elements and nullors) we first eliminate the passive elements through AM operations. This produces the STPs. Second, the all-nullor circuit is then used to find the signs or the STPs. Finally, the transfer function (in symbolic, if chosen) is obtained from the ratio between the STPs.