Objective:Studies have shown thatβ-globin gene presents a selective expression transformation mechanism during development,and its upstream locus control region(LCR)regulates the expression pattern ofβ-globin gene f...Objective:Studies have shown thatβ-globin gene presents a selective expression transformation mechanism during development,and its upstream locus control region(LCR)regulates the expression pattern ofβ-globin gene family.To further explore the molecular network ofβ-globin gene expression regulation,other long-range regulatory elements that may be involved in the regulation ofβ-globin gene expression were screened and the dynamic regulation and transformation mechanism ofβ-globin gene was deeply studied.Methods:Promyelocytic cells were induced to differentiate by all-trans retinoic acid.β-globin gene promoter region and LCR were used as the target sites for circular chromosome conformational capture(4C)analysis.Through sequencing and regulatory element analysis,the sites interacting withβ-globin family loci were screened in the whole genome.Results:According to the results of 4C sequencing,the sites that interact with HBD promoter region and LCR were screened.Verified by chromosome conformational capture(3C),the results were consistent with those of sequencing.The functional analysis of regulatory elements by formaldehyde-assisted separation regulatory elements and Epiregio online website showed that the screening sites AC105129.4,AL354707.17,AC078785.22 and AC021646.35 were all potential regulatory elements involved inβ-globin gene.Conclusion:The interaction between 4C screening site and anchor site showed the complex spatial organization ofβ-globin family loci in the nucleus.展开更多
基金Fund Project:National Natural Science Foundation of China(No.31660318)High-level Talents Project of Hainan Natural Science Foundation(No.820RC638)Innovation Project for Graduate Students in Hainan Province(No.Hys2020-377)。
文摘Objective:Studies have shown thatβ-globin gene presents a selective expression transformation mechanism during development,and its upstream locus control region(LCR)regulates the expression pattern ofβ-globin gene family.To further explore the molecular network ofβ-globin gene expression regulation,other long-range regulatory elements that may be involved in the regulation ofβ-globin gene expression were screened and the dynamic regulation and transformation mechanism ofβ-globin gene was deeply studied.Methods:Promyelocytic cells were induced to differentiate by all-trans retinoic acid.β-globin gene promoter region and LCR were used as the target sites for circular chromosome conformational capture(4C)analysis.Through sequencing and regulatory element analysis,the sites interacting withβ-globin family loci were screened in the whole genome.Results:According to the results of 4C sequencing,the sites that interact with HBD promoter region and LCR were screened.Verified by chromosome conformational capture(3C),the results were consistent with those of sequencing.The functional analysis of regulatory elements by formaldehyde-assisted separation regulatory elements and Epiregio online website showed that the screening sites AC105129.4,AL354707.17,AC078785.22 and AC021646.35 were all potential regulatory elements involved inβ-globin gene.Conclusion:The interaction between 4C screening site and anchor site showed the complex spatial organization ofβ-globin family loci in the nucleus.