Chirped-pitch nanoscale circular surface-relief diffraction gratings were photoinscribed on thin films of a Disperse Red 1 functionalized material using a holographic technique. A truncated conical mirror splits and r...Chirped-pitch nanoscale circular surface-relief diffraction gratings were photoinscribed on thin films of a Disperse Red 1 functionalized material using a holographic technique. A truncated conical mirror splits and redirects a converging or diverging laser beam, resulting in an interference pattern of concentric circles with a chirped pitch that can be controlled by varying the wavefront curvature. The resulting circular gratings have a diameter of 12 mm and have the advantage of being produced in a fast, single-step procedure with no requirement for a master grating,photomask, or milling equipment.展开更多
In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm ...In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm laser rotary encoder is mainly introduced, as well as the choice of principal devices.展开更多
文摘Chirped-pitch nanoscale circular surface-relief diffraction gratings were photoinscribed on thin films of a Disperse Red 1 functionalized material using a holographic technique. A truncated conical mirror splits and redirects a converging or diverging laser beam, resulting in an interference pattern of concentric circles with a chirped pitch that can be controlled by varying the wavefront curvature. The resulting circular gratings have a diameter of 12 mm and have the advantage of being produced in a fast, single-step procedure with no requirement for a master grating,photomask, or milling equipment.
文摘In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm laser rotary encoder is mainly introduced, as well as the choice of principal devices.