On August 8, 2005. Hohhot was awarded the title of "Chinese Dairy Capital". Now dairy industry is one of the pillar industries in Hohhot, with strong driving effect to the development of social economy. However; the...On August 8, 2005. Hohhot was awarded the title of "Chinese Dairy Capital". Now dairy industry is one of the pillar industries in Hohhot, with strong driving effect to the development of social economy. However; the sustainable development of dairy industry in Hohhot is threatened by rapid scale expansion and restriction of environmental supporting capacity, In accord with the ideas and requirements of the circular economy theory, this paper analyzes dairy industry pattern from two aspects and establishes the industry system. The dairy industry mainly consists of cow breeding and dairy process. The circular economy mnst set about from the two aspects. For the most part, dairy processing should start from the two most key links, namely packing and water using.展开更多
With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Ch...With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Chongqing is taking shape,but the waxy corn processing is still in the initial stage with smaller enterprise scale and fewer processing product variety. Based on the analysis of the development advantages and disadvantages of waxy corn processing industry in Chongqing,this paper brings forward the development ideas and strategies of Chongqing waxy corn processing industry from three aspects of production,processing and policy.展开更多
There are currently several problems that exist in the rice processing industry, including a low amount of deep processing and low resource utilization. Using a rice processing enterprise as a study case, we propose t...There are currently several problems that exist in the rice processing industry, including a low amount of deep processing and low resource utilization. Using a rice processing enterprise as a study case, we propose the construction of a new rice industrial chain guided by the circular economy concept and we analyzed the economic returns, ecological effectiveness, and social benefits from the extension of circular economy. This paper aims to provide beneficial information that agricultural enterprises can use to develop the circular economy method.展开更多
Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace g...Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace gas of a steel mill is proposed. This cyclic process can make use of abundant Fe_(3)O_(4) and CaO as solid oxygen and CO_(2) carriers at atmospheric pressure. A proof of concept was obtained in a laboratory-scale fixed bed reactor with synthetic blast furnace gas and Fe_(3)O_(4) /CaO = 0.6 kg/kg. CO production from the proposed process was investigated at both isothermal conditions(1023 K) and upon imposing a temperature program from 1023 to 1148 K. The experimental results were compared using performance indicators such as CO yield, CO space time yield, carbon recovery of the process, fuel utilisation, and solids’ utilisation.The temperature-programmed CO production resulted in a CO yield of 0.056 ± 0.002 mol per mol of synthetic blast furnace gas at an average CO space time yield of 7.6 mmol kgFe^(-1) s^(-1) over 10 cycles, carbon recovery of 48% ± 1%, fuel utilisation of 23% ± 2%, and an average calcium oxide and iron oxide utilisation of 22% ± 1% and 11% ± 1%. These experimental performance indicators for the temperature-programmed CO production were consistently better than those of the isothermal implementation mode by 20% to 35%. Over 10 consecutive process cycles, no significant losses in CO yield were observed in either implementation mode. Process simulation was carried out for 1 million metric tonnes per year of equivalent CO_(2) emissions from the blast furnace gas of a steel mill to analyse the exergy losses in both modes of operation. Comparison of the exergy efficiency of the temperature-programmed process to the isothermal process showed that the former is more efficient because of the higher CO concentration achievable,despite 20% higher exergy losses caused by heat transfer required to change temperature.展开更多
Driven by increasing global population and by growing demand for individual wealth, the consumption of energy and raw materials as well as the steadily growing CO2 concentration in atmosphere pose great challenges to ...Driven by increasing global population and by growing demand for individual wealth, the consumption of energy and raw materials as well as the steadily growing CO2 concentration in atmosphere pose great challenges to process engineering. This complex multi-scale discipline deals with the transformation of mass by energy to manifold products in different industrial fields under economical and ecological sus- tainable conditions. In growing circular economy, process engineering increasingly plays an important role in recovering valuable components from very diffuse material flows leaving the user stocks following widely variable time periods of use. As well it is engaged in thermal recovery of energy therefrom and in environmentally safe disposal of residual solid wastes whose recovery economically is not feasible. An efficient recovery of materials and energy following the laws of entropy is a must. A complex network of mass, energy, transportation and information flows has to be regarded with growing traded quantities of used goods even on global level. Important constraints in time, however, exist for a necessary realization of innovative new processes and communal mobility and industrial infrastructure on medium and large scale. Based on reasonable long term and highly reliable statistics from industrial organizations repre- senting steel and paper industry, some limits and trends of possible developments in processing of those industries with long recycling experience will be discussed.展开更多
文摘On August 8, 2005. Hohhot was awarded the title of "Chinese Dairy Capital". Now dairy industry is one of the pillar industries in Hohhot, with strong driving effect to the development of social economy. However; the sustainable development of dairy industry in Hohhot is threatened by rapid scale expansion and restriction of environmental supporting capacity, In accord with the ideas and requirements of the circular economy theory, this paper analyzes dairy industry pattern from two aspects and establishes the industry system. The dairy industry mainly consists of cow breeding and dairy process. The circular economy mnst set about from the two aspects. For the most part, dairy processing should start from the two most key links, namely packing and water using.
基金Supported by Science and Technology Service Platform Project of Chongqing Science and Technology Commission(cstc2015ptfw-ggfw80001)Agricultural Development Project of Chongqing Academy of Agricultural Sciences(Research and Demonstration of the Key Technology in Adjusting Corn Planting Structure)Soft Science Project of Jiulongpo District Science and Technology Commission in Chongqing Municipality(Study on the Industrialization Layout and Development Strategy of Grain Reform in Chongqing)
文摘With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Chongqing is taking shape,but the waxy corn processing is still in the initial stage with smaller enterprise scale and fewer processing product variety. Based on the analysis of the development advantages and disadvantages of waxy corn processing industry in Chongqing,this paper brings forward the development ideas and strategies of Chongqing waxy corn processing industry from three aspects of production,processing and policy.
基金Key Ecology Discipline Program of Fujian Province (06085070)Key Program for Construction the Economic Zone on the Western Side of the Taiwan Straits, Fujian Province (0b08b005)
文摘There are currently several problems that exist in the rice processing industry, including a low amount of deep processing and low resource utilization. Using a rice processing enterprise as a study case, we propose the construction of a new rice industrial chain guided by the circular economy concept and we analyzed the economic returns, ecological effectiveness, and social benefits from the extension of circular economy. This paper aims to provide beneficial information that agricultural enterprises can use to develop the circular economy method.
基金financial support from the project Cabon4PUR which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768919support of Dr. Alessandro Longo for Rietveld refinement of XRDsupport of the Wim Rogiers and Micha?l Lottin at the LCT for the fixed bed reactor setup used for experimental validation of the process concept。
文摘Up to 9% of the global CO_(2) emissions come from the iron and steel industry. Here, a combined chemical looping process to produce CO, a building block for the chemical industry, from the CO_(2) -rich blast furnace gas of a steel mill is proposed. This cyclic process can make use of abundant Fe_(3)O_(4) and CaO as solid oxygen and CO_(2) carriers at atmospheric pressure. A proof of concept was obtained in a laboratory-scale fixed bed reactor with synthetic blast furnace gas and Fe_(3)O_(4) /CaO = 0.6 kg/kg. CO production from the proposed process was investigated at both isothermal conditions(1023 K) and upon imposing a temperature program from 1023 to 1148 K. The experimental results were compared using performance indicators such as CO yield, CO space time yield, carbon recovery of the process, fuel utilisation, and solids’ utilisation.The temperature-programmed CO production resulted in a CO yield of 0.056 ± 0.002 mol per mol of synthetic blast furnace gas at an average CO space time yield of 7.6 mmol kgFe^(-1) s^(-1) over 10 cycles, carbon recovery of 48% ± 1%, fuel utilisation of 23% ± 2%, and an average calcium oxide and iron oxide utilisation of 22% ± 1% and 11% ± 1%. These experimental performance indicators for the temperature-programmed CO production were consistently better than those of the isothermal implementation mode by 20% to 35%. Over 10 consecutive process cycles, no significant losses in CO yield were observed in either implementation mode. Process simulation was carried out for 1 million metric tonnes per year of equivalent CO_(2) emissions from the blast furnace gas of a steel mill to analyse the exergy losses in both modes of operation. Comparison of the exergy efficiency of the temperature-programmed process to the isothermal process showed that the former is more efficient because of the higher CO concentration achievable,despite 20% higher exergy losses caused by heat transfer required to change temperature.
文摘Driven by increasing global population and by growing demand for individual wealth, the consumption of energy and raw materials as well as the steadily growing CO2 concentration in atmosphere pose great challenges to process engineering. This complex multi-scale discipline deals with the transformation of mass by energy to manifold products in different industrial fields under economical and ecological sus- tainable conditions. In growing circular economy, process engineering increasingly plays an important role in recovering valuable components from very diffuse material flows leaving the user stocks following widely variable time periods of use. As well it is engaged in thermal recovery of energy therefrom and in environmentally safe disposal of residual solid wastes whose recovery economically is not feasible. An efficient recovery of materials and energy following the laws of entropy is a must. A complex network of mass, energy, transportation and information flows has to be regarded with growing traded quantities of used goods even on global level. Important constraints in time, however, exist for a necessary realization of innovative new processes and communal mobility and industrial infrastructure on medium and large scale. Based on reasonable long term and highly reliable statistics from industrial organizations repre- senting steel and paper industry, some limits and trends of possible developments in processing of those industries with long recycling experience will be discussed.