This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication...This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.展开更多
In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid contro...In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.展开更多
The problem of cooperative circular formation with limited target information for multiple Unmanned Aerial Vehicle(UAV)system is addressed in this paper.A pigeon-inspired circular formation control method is proposed ...The problem of cooperative circular formation with limited target information for multiple Unmanned Aerial Vehicle(UAV)system is addressed in this paper.A pigeon-inspired circular formation control method is proposed to form the desired circular distribution in a plane based on the intelligent pigeon behavior during hovering.To reach the goal of prescribed radius and angular distribution,the controller is designed consisting of a circular movement part and a formation distribution part.Therein,the circular movement part is designed to make each UAV rotate around the speci-ed circle at the same angular speed only using the relative position between the UAV and the target.The formation distribution part could adjust the angular distance between each UAV and its neighbors with the jointly connected network to reduce communication cost.To smooth the speed variation,nonlinear PID-type method is delivered throughout the evolution of the system.The convergence analysis of the proposed control protocol is presented using Lyapunov theory and graph tools.The e®ectiveness of the proposed control strategies is demonstrated through numerical simulations.展开更多
基金supported in part by the National Natural Science Foundation of China(61773327,62273182)the Research Grants Council of the Hong Kong Special Administrative Region of China(CityU/11217619)the Fundamental Research Funds for the Central Universities(30921011213)。
文摘This article addresses the circular formation control problem of a multi-agent system moving on a circle in the presence of limited communication ranges and communication delays.To minimize the number of communication links,a novel distributed controller based on a cyclic pursuit strategy is developed in which each agent needs only its leading neighbour’s information.In contrast to existing works,we propose a set of new potential functions to deal with heterogeneous communication ranges and communication delays simultaneously.A new framework based on the admissible upper bound of the formation error is established so that both connectivity maintenance and order preservation can be achieved at the same time.It is shown that the multi-agent system can be driven to the desired circular formation as time goes to infinity under the proposed controller.Finally,the effectiveness of the proposed method is illustrated by some simulation examples.
文摘In this paper,we study the circular formation problem for the second-order multi-agent systems in a plane,in which the agents maintain a circular formation based on a probabilistic position.A distributed hybrid control protocol based on a probabilistic position is designed to achieve circular formation stabilization and consensus.In the current framework,the mobile agents follow the following rules:1)the agent must follow a circular trajectory;2)all the agents in the same circular trajectory must have the same direction.The formation control objective includes two parts:1)drive all the agents to the circular formation;2)avoid a collision.Based on Lyapunov methods,convergence and stability of the proposed circular formation protocol are provided.Due to limitations in collision avoidance,we extend the results to LaSalle’s invariance principle.Some theoretical examples and numerical simulations show the effectiveness of the proposed scheme.
基金This work was partially supported by Science and Technology Innovation 2030-Key Project of\New Generation Arti-cial Intelligence"under the Grant No.2018AAA0102405National Natural Science Foundation of China under the Grant Nos.91948204,U20B2071,U1913602,and U19B2033.
文摘The problem of cooperative circular formation with limited target information for multiple Unmanned Aerial Vehicle(UAV)system is addressed in this paper.A pigeon-inspired circular formation control method is proposed to form the desired circular distribution in a plane based on the intelligent pigeon behavior during hovering.To reach the goal of prescribed radius and angular distribution,the controller is designed consisting of a circular movement part and a formation distribution part.Therein,the circular movement part is designed to make each UAV rotate around the speci-ed circle at the same angular speed only using the relative position between the UAV and the target.The formation distribution part could adjust the angular distance between each UAV and its neighbors with the jointly connected network to reduce communication cost.To smooth the speed variation,nonlinear PID-type method is delivered throughout the evolution of the system.The convergence analysis of the proposed control protocol is presented using Lyapunov theory and graph tools.The e®ectiveness of the proposed control strategies is demonstrated through numerical simulations.