Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each spec...Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...展开更多
With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical pro...With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical properties. In this paper, to obtain the accurate material properties of the circular hollow section (CHS) under pure compression, a series of concentric compression tests are conducted on the millimeter-scale cold-formed 304 stainless steel circu- lar tubular stub columns after exposure to a vacuum brazing process. The tests cover a total of 18 small-diameter stub tubes with measured thickness-to-diameter ratios (t/D) from 0.023 to 0.201. A generalized three-stage nominal stress-strain model is developed for describing the compressive behavior of the post-brazing CHSs over the full strain range. This mechanical model is especially applicable to computer code implementation. Hence, an interactive computer pro- gram is developed to simultaneously optimize three strain hardening exponents (n1, n2, n3) in the expression of the model to produce the stress-strain curve capable of accurately replicating the test data. To further reduce the number of the model and material parameters on which this model depends, this paper also develops five expressions for determining the 2.5% proof stress (ap2), n2, the ultimate compressive strength (σp3), n3, and the ultimate plastic strain (p3%) for given experimental values of three basic material parameters (E0, σ0.01, σ0.2). These expressions are validated to he effective for the CHSs with t/D 〉_ 0.027. The analytically predicted full-range stress-strain curves have generally shown close agreement with the ones obtained experimentally.展开更多
为研究大曲率主管的圆钢管X型节点轴压性能,采用数值模拟方法对96个不同支、主管外径比β、主管径厚比2γ和主管曲率半径R的圆钢管节点进行有限元参数分析。有限元参数分析结果表明:支、主管外径比β对节点的破坏模式影响较大;曲率半径...为研究大曲率主管的圆钢管X型节点轴压性能,采用数值模拟方法对96个不同支、主管外径比β、主管径厚比2γ和主管曲率半径R的圆钢管节点进行有限元参数分析。有限元参数分析结果表明:支、主管外径比β对节点的破坏模式影响较大;曲率半径R对节点破坏模式影响较小。小β值节点主管出现局部凹陷之后产生一定薄膜效应导致承载力出现一定回升;大β值节点试件主管仅出现椭圆化变形无承载力回升现象。当β=0.8时,随着曲率变化节点极限承载力变化较小。当β=0.2、0.4和0.6时,主管曲率半径大于12倍主管直径时,极限承载力变化较小;主管曲率半径小于12倍主管直径时,极限承载力随曲率增大而有所提高。对于相同的主管径厚比2γ,主管曲率半径大于12倍主管直径时,极限承载力变化较小;主管曲率半径小于12倍主管直径时,极限承载力随曲率增大而有所提高。在欧洲钢结构规范(Eurocode3 Design of Steel Structures)中的主管平直的圆钢管X型节点极限承载力计算公式的基础上,采用乘以修正系数的方式拟合出大曲率主管的圆钢管X型节点轴压承载力计算公式,为该类节点的设计提供参考。展开更多
基金Supported by National Natural Science Foundation of China (No.50608054)
文摘Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...
基金The work was supported by the National Natural Science Foundation of China under Grant Nos. 11432004 and 11421091.
文摘With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical properties. In this paper, to obtain the accurate material properties of the circular hollow section (CHS) under pure compression, a series of concentric compression tests are conducted on the millimeter-scale cold-formed 304 stainless steel circu- lar tubular stub columns after exposure to a vacuum brazing process. The tests cover a total of 18 small-diameter stub tubes with measured thickness-to-diameter ratios (t/D) from 0.023 to 0.201. A generalized three-stage nominal stress-strain model is developed for describing the compressive behavior of the post-brazing CHSs over the full strain range. This mechanical model is especially applicable to computer code implementation. Hence, an interactive computer pro- gram is developed to simultaneously optimize three strain hardening exponents (n1, n2, n3) in the expression of the model to produce the stress-strain curve capable of accurately replicating the test data. To further reduce the number of the model and material parameters on which this model depends, this paper also develops five expressions for determining the 2.5% proof stress (ap2), n2, the ultimate compressive strength (σp3), n3, and the ultimate plastic strain (p3%) for given experimental values of three basic material parameters (E0, σ0.01, σ0.2). These expressions are validated to he effective for the CHSs with t/D 〉_ 0.027. The analytically predicted full-range stress-strain curves have generally shown close agreement with the ones obtained experimentally.
文摘为研究大曲率主管的圆钢管X型节点轴压性能,采用数值模拟方法对96个不同支、主管外径比β、主管径厚比2γ和主管曲率半径R的圆钢管节点进行有限元参数分析。有限元参数分析结果表明:支、主管外径比β对节点的破坏模式影响较大;曲率半径R对节点破坏模式影响较小。小β值节点主管出现局部凹陷之后产生一定薄膜效应导致承载力出现一定回升;大β值节点试件主管仅出现椭圆化变形无承载力回升现象。当β=0.8时,随着曲率变化节点极限承载力变化较小。当β=0.2、0.4和0.6时,主管曲率半径大于12倍主管直径时,极限承载力变化较小;主管曲率半径小于12倍主管直径时,极限承载力随曲率增大而有所提高。对于相同的主管径厚比2γ,主管曲率半径大于12倍主管直径时,极限承载力变化较小;主管曲率半径小于12倍主管直径时,极限承载力随曲率增大而有所提高。在欧洲钢结构规范(Eurocode3 Design of Steel Structures)中的主管平直的圆钢管X型节点极限承载力计算公式的基础上,采用乘以修正系数的方式拟合出大曲率主管的圆钢管X型节点轴压承载力计算公式,为该类节点的设计提供参考。