Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In ...Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.展开更多
Based on the angular spectrum method and the circular Gaussian distribution(CGD) model of scattering media,we numerically simulate light focusing through strongly scattering media.A high contrast focus in the target a...Based on the angular spectrum method and the circular Gaussian distribution(CGD) model of scattering media,we numerically simulate light focusing through strongly scattering media.A high contrast focus in the target area is produced by using feedback optimization algorithm with binary amplitude modulation.It is possible to form the focusing with one focus or multiple foci at arbitrary areas.The influence of the number of square segments of spatial light modulation on the enhancement factor of intensity is discussed.Simulation results are found to be in good agreement with theoretical analysis for light refocusing.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61172138 and 61401340)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2013JQ8040)+4 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130203120004)the Open Research Fund of the Academy of Satellite Application,China(Grant No.2014 CXJJ-DH 12)the Xi’an Science and Technology Plan,China(Grant No.CXY1350(4))the Fundamental Research Funds for the Central Universities,China(Grant Nos.201413B,201412B,and JB141303)the Open Fund of Key Laboratory of Precision Navigation and Timing Technology,National Time Service Center,Chinese Academy of Sciences(Grant Nos.2014PNTT01,2014PNTT07,and 2014PNTT08)
文摘Range measurement has found multiple applications in deep space missions. With more and further deep space ex- ploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carded out to evaluate the performance of XCPolR.
基金supported by the National Natural Science Foundation of China(Nos.61178015 and 11304104)
文摘Based on the angular spectrum method and the circular Gaussian distribution(CGD) model of scattering media,we numerically simulate light focusing through strongly scattering media.A high contrast focus in the target area is produced by using feedback optimization algorithm with binary amplitude modulation.It is possible to form the focusing with one focus or multiple foci at arbitrary areas.The influence of the number of square segments of spatial light modulation on the enhancement factor of intensity is discussed.Simulation results are found to be in good agreement with theoretical analysis for light refocusing.