The influence of weights is usually ignored in the study of nonlinear vibrations of plates.In this paper,the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is pr...The influence of weights is usually ignored in the study of nonlinear vibrations of plates.In this paper,the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented.The nonlinear governing equations are derived from the generalized Hamilton's principle and the von Kármán plate theory.The equilibrium configurations due to weights are determined and validated by the finite element method(FEM).A nonlinear model for the vibration around the equilibrium configuration is established.Moreover,the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated.The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model.This leads to interesting phenomena.For example,considering weights increases the natural frequency.Furthermore,when the influence of weights is considered,the vibration response of the plate becomes asymmetrical.展开更多
New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin...New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.展开更多
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating ci...The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.展开更多
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial d...This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultim...Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.展开更多
In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for ci...In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for circular plates with initial deflection are obtained by use of Galerkin method and Lindstedt-Poincare perturbation method. The effect of initial deflection on the dynamic behavior of the flexible plates are also discussed.展开更多
The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved b...The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.展开更多
The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary d...The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.展开更多
The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and st...The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and strain-hardening material undergoes serious local deformation but is not perforated during the impact. The theoretical analysis is based on an energy approach, in which the Cowper-Symonds equation is used for the consideration of strain rate sensitive effects and the parameters involved are determined with the aid of experimental data. The maximum permanent deflections predicted by the theoretical model are compared with those of FEM simulation and published papers obtained both by theory and experiment, and good agreement is achieved for a wide range of thickness of the plates and initial impact velocities.展开更多
By virtue of the general solution of dynamic elasticity equations for transverse isotropy as well as the variable separation method, three-dimensional exact solutions of circular plates are obtained under two types of...By virtue of the general solution of dynamic elasticity equations for transverse isotropy as well as the variable separation method, three-dimensional exact solutions of circular plates are obtained under two types of boundary conditions. The solutions can consider both axisymmetric and non-axisymmetric cases. Solutions based on the classical plate theory and Mindlin plate theory are also presented under the corresponding boundary conditions. Numerical results are finally presented and comparisons between the three theories are made.展开更多
By employing the general solution for coupled three-dimensional equations of a transversely isotropic piezoelectric body, this paper investigates the free vibration of a circular plate made of piezoelectric material. ...By employing the general solution for coupled three-dimensional equations of a transversely isotropic piezoelectric body, this paper investigates the free vibration of a circular plate made of piezoelectric material. Three-dimensional exact solutions are then obtained under two specified boundary conditions, which can be used for both axisymmetric and non-axisymmetric cases. Numerical results are finally presented.展开更多
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropi...The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.展开更多
The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The supp...The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.展开更多
With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed ...With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.展开更多
In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of partic...In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.展开更多
Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of...Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established.Then,the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method.Meanwhile,the generalized eigenvalue under three different boundary conditions are calculated.In this case,the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed.The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge,clamped edge and free edge are discussed.The results provide theoretical basis for improving the dynamic stability of the circular plate.展开更多
The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of moti...The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.展开更多
This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The m...This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.展开更多
An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isot...An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.展开更多
Based on the three-dimensional elasticity equations, this paper studies the elastic bending response of a transversely isotropic functionally graded solid circular plate subject to transverse biharmonic forces applied...Based on the three-dimensional elasticity equations, this paper studies the elastic bending response of a transversely isotropic functionally graded solid circular plate subject to transverse biharmonic forces applied on its top surface. The material prop- erties can continuously and arbitrarily vary along the thickness direction. By virtue of the generalized England's method, the problem can be solved by determining the expres- sions of four analytic functions. Expanding the transverse loarl in Fourier series along the circumferential direction eases the theoretical construction of the four analytic functions for a series of important biharmonic loads. Certain boundary conditions are then used to determine the unknown constants that are involved in the four constructed analytic functions. Numerical examples are presented to validate the proposed method. Then, we scrutinize the asymmetric bending behavior of a transversely isotropic functionally graded solid circular plate with different geometric and material parameters.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12002195)the National Science Fund for Distinguished Young Scholars of China(No.12025204)the Program of Shanghai Municipal Education Commission of China(No.2019-01-07-00-09-E00018)。
文摘The influence of weights is usually ignored in the study of nonlinear vibrations of plates.In this paper,the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented.The nonlinear governing equations are derived from the generalized Hamilton's principle and the von Kármán plate theory.The equilibrium configurations due to weights are determined and validated by the finite element method(FEM).A nonlinear model for the vibration around the equilibrium configuration is established.Moreover,the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated.The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model.This leads to interesting phenomena.For example,considering weights increases the natural frequency.Furthermore,when the influence of weights is considered,the vibration response of the plate becomes asymmetrical.
文摘New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.
基金Supported by National Natural Science Foundation of China(Grant No11472239)Hebei Provincial Natural Science Foundation of China(Grant No.A2015203023)Key Project of Science and Technology Research of Higher Education of Hebei Province of China(Grant No.ZD20131055)
文摘The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
基金Project (Nos. 10472102 and 10432030) supported by the NationalNatural Science Foundation of China
文摘This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration. And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained. A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
基金Project(51478477)supported by the National Natural Science Foundation of ChinaProject(2016CX012)supported by the Innovation-driven Project of Central South University,ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.
文摘In this paper, the differential equations of flexible circular plates with initial deflection are derived. The stability of motion is investigated in phase plane. The periodical solutions of nonlinear vibration for circular plates with initial deflection are obtained by use of Galerkin method and Lindstedt-Poincare perturbation method. The effect of initial deflection on the dynamic behavior of the flexible plates are also discussed.
基金Project supported by the National Natural Science Foundation of China (No. 50478081).
文摘The torsional vibration of a rigid plate resting on saturated stratum overlaying bedrock has been analysed for the first time. The dynamic governing differential equations for saturated poroelastic medium are solved by employing the technology of Hankel transform. By taking into account the boundary conditions, the dual integral equations of torsional vibration of a rigid circular plate are established, which are further converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficients of the foundation on saturated stratum, the contact shear stress under the foundation and the angular amplitude of the foundation are evaluated. Numerical results indicate that, when the dimensionless height is bigger than 5, saturated stratum overlaying bedrock can be treated as saturated half space approximately. When the dimensionless frequency is low, the permeability of the soil must be taken into account. Furthermore, when the vibration frequency is a constant, the height of the saturated stratum has a slight effect on the dimensionless contact shear stress under the foundation.
基金Project(11102136)supported by the National Natural Science Foundation of ChinaProject(2012ZDK04)supported by the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety,China
文摘The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.
基金Project supported by the National Natural Sciences Foundation of China(No.10532020)the Engineering Research Institute,Peking University(ERIPKU)(No.204038).
文摘The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and strain-hardening material undergoes serious local deformation but is not perforated during the impact. The theoretical analysis is based on an energy approach, in which the Cowper-Symonds equation is used for the consideration of strain rate sensitive effects and the parameters involved are determined with the aid of experimental data. The maximum permanent deflections predicted by the theoretical model are compared with those of FEM simulation and published papers obtained both by theory and experiment, and good agreement is achieved for a wide range of thickness of the plates and initial impact velocities.
基金the National Natural Science Foundation of China(No.19872060)
文摘By virtue of the general solution of dynamic elasticity equations for transverse isotropy as well as the variable separation method, three-dimensional exact solutions of circular plates are obtained under two types of boundary conditions. The solutions can consider both axisymmetric and non-axisymmetric cases. Solutions based on the classical plate theory and Mindlin plate theory are also presented under the corresponding boundary conditions. Numerical results are finally presented and comparisons between the three theories are made.
基金The project supported by the National Natural Science Foundation of China (No. 19872060)
文摘By employing the general solution for coupled three-dimensional equations of a transversely isotropic piezoelectric body, this paper investigates the free vibration of a circular plate made of piezoelectric material. Three-dimensional exact solutions are then obtained under two specified boundary conditions, which can be used for both axisymmetric and non-axisymmetric cases. Numerical results are finally presented.
基金Project supported by the National Natural Science Foundation of China(No.50678108)the Natural Science Foundation of Zhejiang Province(No.Y106264 )
文摘The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.
文摘The cubic B-splines taken as trial function, the large deflection of a circular plate with arbitrarily variable thickness,as well as the buckling load, have been calculated by the method of point collocation. The support can be elastic. Loads imposed can be polynomial distributed loads, uniformly distributed radial forces or moments along the edge respectively or their combinations. Convergent solutions can still be obtained by this method under the load whose value is in great excess of normal one. Under the action of the uniformly distributed loads, linear solutions of circular plates with linearly or quadratically variable thickness are compared with those obtained by the parameter method. Buckling of a circular plate with identical thickness beyond critical thrust is compared with those obtained by the power series method.
文摘With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.
基金Partially Supported by the National Natural Science Foundation of China
文摘In this paper by using the concept of mixed boundary funetions, an analytical method is proposed for a mixed boundary value problem of circular plates. The trial functions are constructed by using the series of particular solutions of the biharmonic equations in the polar coordinate system. Three examples are presented to show the stability and high convergence rate of the method.
基金supported by the National Natural Science Foundation of China(11472211)the Natural Science Foundation of Education Department of Shaanxi Province of China(2013JK1042).
文摘Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed.Based on the thin plate theory in involving the variable temperature,the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established.Then,the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method.Meanwhile,the generalized eigenvalue under three different boundary conditions are calculated.In this case,the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed.The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge,clamped edge and free edge are discussed.The results provide theoretical basis for improving the dynamic stability of the circular plate.
基金Natural Science Research Project of Education Department of Shaanxi Province,China(No.08JK394).
文摘The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.
文摘This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.
基金Project supported by the National Natural Science Foundation of China (No.50478081)
文摘An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.
基金Project supported by the National Natural Science Foundation of China(No.11621062)the Natural Science Foundation of Zhejiang Province(No.LY18A020009)+1 种基金the Science and Technology Project of Ministry of Housing and Urban and Rural Development(No.2016-K5-052)the Science Foundation of Zhejiang Sci-Tech University(No.16052188-Y)
文摘Based on the three-dimensional elasticity equations, this paper studies the elastic bending response of a transversely isotropic functionally graded solid circular plate subject to transverse biharmonic forces applied on its top surface. The material prop- erties can continuously and arbitrarily vary along the thickness direction. By virtue of the generalized England's method, the problem can be solved by determining the expres- sions of four analytic functions. Expanding the transverse loarl in Fourier series along the circumferential direction eases the theoretical construction of the four analytic functions for a series of important biharmonic loads. Certain boundary conditions are then used to determine the unknown constants that are involved in the four constructed analytic functions. Numerical examples are presented to validate the proposed method. Then, we scrutinize the asymmetric bending behavior of a transversely isotropic functionally graded solid circular plate with different geometric and material parameters.