3D modeling of trees in real environments is a challenge in computer graphics and computer vision, since the geometric shape and topological structure of trees are more complex than conventional artificial objects. In...3D modeling of trees in real environments is a challenge in computer graphics and computer vision, since the geometric shape and topological structure of trees are more complex than conventional artificial objects. In this paper, we present a multi-process approach that is mainly performed in 2D space to faithfully construct a 3D model of the trunk and main branches of a real tree from a single range image. The range image is first segmented into patches by jump edge detection based on depth discontinuity. Coarse skeleton points and initial radii are then computed from the contour of each patch. Axis directions are estimated using cylinder fitting in the neighborhood of each coarse skeleton point. With the help of axis directions, skeleton nodes and corresponding radii are computed. Finally, these skeleton nodes are hierarchically connected, and improper radii are modified based on plant knowledge. 3D models generated from single range images of real trees demonstrate the effectiveness of our method. The main contributions of this paper are simple reconstruction by virtue of image storage order of single scan and skeleton computation based on axis directions.展开更多
基金This work is supported by the National High Technology Development 863 Program of China under Grant Nos.2006AA01Z301 and 2006AA10Z229the National Natural Science Foundation of China under Grant Nos.60674128,60073007,and 60473110Beijing Municipal Natural Science Foundation under Grant No.4062033.
文摘3D modeling of trees in real environments is a challenge in computer graphics and computer vision, since the geometric shape and topological structure of trees are more complex than conventional artificial objects. In this paper, we present a multi-process approach that is mainly performed in 2D space to faithfully construct a 3D model of the trunk and main branches of a real tree from a single range image. The range image is first segmented into patches by jump edge detection based on depth discontinuity. Coarse skeleton points and initial radii are then computed from the contour of each patch. Axis directions are estimated using cylinder fitting in the neighborhood of each coarse skeleton point. With the help of axis directions, skeleton nodes and corresponding radii are computed. Finally, these skeleton nodes are hierarchically connected, and improper radii are modified based on plant knowledge. 3D models generated from single range images of real trees demonstrate the effectiveness of our method. The main contributions of this paper are simple reconstruction by virtue of image storage order of single scan and skeleton computation based on axis directions.