A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described ...A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described in terms of evolution of meso- scopic structure,leading to progressive degradation of elastic modulus and failure strength of material.In terms of material degradation,a series of numerical simulations were per- formed to study the convergence and subsequent failure in circular tunnels.The numerical results provide a complete illumination for the closure,damage and failure behavior with different loading conditions.It is shown that the depth and the ratio of far field stresses play an important role in the creep behavior of tunnels.Creep failure is expected to occur in the direction of the smallest far field stress component,which means that rheological failure of tunnels is influenced not only by the rock characteristic around the tunnels but also by the orientation and distribution of far field stress on a global scale.展开更多
Rock burst in a circular tunnel under high in-situ stress conditions was investigated with a numerical method coupled the rock failure process theory (RFPA) and discontinuous deformation theory (DDA). Some numerical t...Rock burst in a circular tunnel under high in-situ stress conditions was investigated with a numerical method coupled the rock failure process theory (RFPA) and discontinuous deformation theory (DDA). Some numerical tests were carraied out to investigate the failuer patterns of circular tunnel under unloading conditions. Compared the results under loading conditions,the shapes of failure zones are more regular under the unloading conditions. The failure pat-terns in the same type of rock mass are clearly different because of non-homogeneity of the rock material. The extension of cracks shows some predictability with an increasing of in-situ stress. When the homogeneity index of rocks (m) is ei-ther relatively high or low and lateral pressure coefficients (λ) is high,the number of regular shear slide cracks decreases and the probability of a rock burst also becomes lower. Our numerical simulation results show that the stability of sur-face rock and the natural bedding stratification of rock material greatly affect rock bursts. Installing bolts with due dili-gence and suitably can effectively prevent rock bursts. However,it is not effective to control rock bursts by releasing the strain energy with normal pre-boreholes.展开更多
The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and...The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.展开更多
The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The fa...The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.展开更多
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored...Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.展开更多
To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the ...To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the entire stress path of“high initial stressþinternal unloadingþstress adjustment”(HUS test)was realized for the intact cubic red sandstone samples(100 mm×100 mm×100 mm).Comparative tests were conducted on cubic red sandstone samples with prefabricated circular holes(425 mm)under the stress path of“prefabricated circular hole+þhigh initial stress+stress adjustment”(PHS test),thereby highlighting the influence of internal unloading on rockburst failure.The test results revealed that with an increase in vertical stress,the sidewalls in both the HUS and PHS tests suffered strain rockburst failure.Compared with the PHS test,the initial failure stress in the HUS test is lower,and it is easier to induce sidewall rockbursts.This indicates that the internal unloading influences the sidewall failure,causing an obvious strength-weakening effect,which becomes more significant with an increase in buried depth.The strain rockburst failure was more severe in the HUS test owing to the influence of internal unloading.V-shaped rockburst pits were formed in the HUS tests,whereas in the PHS test,arcshaped rockburst pits were produced.It was also found that strain rockburst failure may occur only when the rock has a certain degree of rockburst proneness.展开更多
A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sid...A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.展开更多
To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specime...To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases.展开更多
True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure p...True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure process and characteristics of a circular tunnel of surrounding rocks. The spalling failure under SWC can be divided into four periods: calm period, buckling deformation period, period of rock fragment gradual buckling and exfoliation, and period of formation of symmetrical V-shaped notches. When the horizontal axial and vertical stresses were constant, the spalling failure severity was reduced with the increase in lateral stress. Under natural water content, a strong rockburst with dynamic failure characteristics occurred on the circular hole sidewall. Under SWC, the failure severity was reduced and the circular hole sidewall experienced spalling failure, exhibiting progressive static failure characteristics.Therefore, water can reduce the failure severity of surrounding rocks in deep underground engineering, which has a certain guiding significance for the prevention and control of rockbursts.展开更多
The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the roc...The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.展开更多
The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shal...The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shallow circle tunnel is not taken into consideration so that the mechanical characteristics can be easily described. Based on the mechanism, the upper bound solution of supporting pressure of tunnels under the condition of surface settlements and overloads on the ground surface is derived. The objective function is formed from virtual work equations under the variational principle, and solutions are presented by the optimum theory. Comparisons with previous works are made. The numerical results of the present method show great agreement with those of existing ones. With regard to the surface settlement and overloads, the influence of different rock parameters on the collapsing shape is analyzed.展开更多
Mechanism of circular tunnel rockburst is that, when the carrying capacity of the centralized zone of plastic deformation in limiting state reduces, the comparatively intact part in rock mass unloads by way of elastic...Mechanism of circular tunnel rockburst is that, when the carrying capacity of the centralized zone of plastic deformation in limiting state reduces, the comparatively intact part in rock mass unloads by way of elasticity; rockburst occurs immediately when the elastic energy released by the comparatively intact part exceeds the energy dissipated by plastic deformation. The equivalent strain was taken as a state variable to establish a catastrophe model of tunnel rockburst, and the computation expression of the earthquake energy released by tunnel rockburst was given. The analysis shows that, the conditions of rockburst occurrence are relative to rock's ratio of elastic modulus to descendent modulus and crack growth degree of rocks; to rock mass with specific rockburst tendency, there exists a corresponding critical depth of softened zone, and rockburst occurs when the depth of softened zone reaches.展开更多
The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunn...The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunnel are modelled with a two-linear-spring design.The novelty of the manuscript consists in studying at the same time transient regimes and imperfect bonded interfaces for simulating the dynamic response of a tunnel embedded in an elastic infinite rock.Wave propagation fields in tunnel and rock are expressed in terms of infinite Bessel and Hankel series.To solve the transient problem,the Laplace transform and the associated Durbin’s algorithm are performed.To exhibit the dynamic responses,influences of various parameters such as the quality of the interface conditions and the thickness of the lining are presented.The dynamic hoop stresses and the solid displacements of both the tunnel and the rock are also proposed.展开更多
Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried o...Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried out,including single tunnel and adjacent double tunnels.The failure process is recorded by the external video and miniature cameras around the tunnel,accompanied by real-time acoustic emission monitoring.The experiments indicate that the shearing processes of rock tunnel can be divided into four steps:(i)cracks appeared around tunnels,(ii)shear cracks and spalling ejection developed,(iii)floor warping occurred,and(iv)shear cracks ran through the tunnel model.Besides,the roughness of the sheared fracture surface decreased with the increase in normal stress.Corresponding numerical simulation indicates that there are tensile stress concentrations and compressive stress concentrations around the tunnel during the shearing process,while the compressive stress concentration areas are under high risk of failure and the existence of adjacent tunnels will increase the degree of stress concentration.展开更多
According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of...According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.展开更多
Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the upl...Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the uplift of circular tunnels in a liquefiable sand layer was investigated with a series of shaking table tests.The research has focused on the buried depth of the tunnel,tunnel diameter,tunnel weight,liquefaction extent,uplift mechanism,and factor of safety against liquefaction-induced uplift.According to the test results,the shallow buried depth,larger diameter,and lower weight can intensify the tunnel uplift,so the displacement in post-liquefaction time continues at the same rate as during the shaking time.Due to the shear-induced dilation,pore water pressure generation around the tunnel was reduced compared with that of the free field.The excess pore water pressure dissipation in the soil overlying the uplifted tun-nel was significant,which leads to suction in the soil deposit.Furthermore,the acceleration response of overlying soil with the uplifted tunnel was similar to that of the free field.However,the soil acceleration response around the tunnel without uplift was similar to the base motion.展开更多
The effects of the interaction between a gallery lining and surrounding ground are evaluated. The gallery is circular with constant thickness and surrounding ground as geotechnical characteristics is soft one. Two typ...The effects of the interaction between a gallery lining and surrounding ground are evaluated. The gallery is circular with constant thickness and surrounding ground as geotechnical characteristics is soft one. Two types of ground are successively considered with bulk modulus K = 9,260 kPa and K = 4,630 kPa. The analysis is carried out for a gallery with 3.80 m inner diameter and 25 cm thickness. This under construction is part of the irrigation system of the "Los Rios" county (Ecuador). Comprehensive computations in various hypotheses pointed out the significant effects of the interaction. The sectional stresses (M, N) in the gallery lining embedded in soft ground depend mainly of the gallery depth versus ground surface. Contrary, the mechanical characteristics of the surrounding ground resulted to have little influence.展开更多
Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assess...Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.展开更多
In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on...In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.展开更多
Two-dimensional dynamic numerical analyses have been conducted,using FLAC 7.0,to evaluate the seismic response of underground structures located far from the seismic source,placed in either linear-elastic or nonlinear...Two-dimensional dynamic numerical analyses have been conducted,using FLAC 7.0,to evaluate the seismic response of underground structures located far from the seismic source,placed in either linear-elastic or nonlinear elastoplastic ground.The interaction between the ground and deep circular tunnels with a tied interface is considered.For the simulations,it is assumed that the liner remains in its elastic regime,and plane strain conditions apply to any cross section perpendicular to the tunnel axis.An elastoplastic constitutive model is implemented in FLAC to simulate the nonlinear ground.The effect of input frequency and relative stiffness between the liner and the ground,on the seismic response of tunnels,is evaluated.The response is studied in terms of distortions normalized with respect to those of the free field,and load demand(axial forces and bending moments)in the liner.In all cases,i.e.for linear-elastic and nonlinear ground models,the results show negligible effect of the input frequency on the distortions of the cross section,for input frequencies smaller than 5 Hz;that is for ratios between the wave length and the tunnel opening(k=D)larger than ten for linear-elastic and nine for nonlinear ground.Larger normalized distortions are obtained for the nonlinear than for the linear-elastic ground,for the same relative stiffness,with differences increasing as the tunnel becomes more flexible,or when the amplitude of the dynamic input shear stress increases.It has been found that normalized distortions for the nonlinear ground do not follow a unique relationship,as it happens for the linear-elastic ground,but increase as the amplitude of the dynamic input increases.The loading in the liner decreases as the structure becomes more flexible with respect to the ground,and is smaller for a tunnel placed in a stiffer nonlinear ground than in a softer nonlinear ground,for the same flexibility ratio.展开更多
基金the"973"Program(2007CB209400)the National Natural Science Foundation of China(40638040)the Opening Foundation of State Key Laboratory of Geohazards Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described in terms of evolution of meso- scopic structure,leading to progressive degradation of elastic modulus and failure strength of material.In terms of material degradation,a series of numerical simulations were per- formed to study the convergence and subsequent failure in circular tunnels.The numerical results provide a complete illumination for the closure,damage and failure behavior with different loading conditions.It is shown that the depth and the ratio of far field stresses play an important role in the creep behavior of tunnels.Creep failure is expected to occur in the direction of the smallest far field stress component,which means that rheological failure of tunnels is influenced not only by the rock characteristic around the tunnels but also by the orientation and distribution of far field stress on a global scale.
基金Projects 50639100 supported by the National Natural Science Foundation of China50539100 by the New Century Talents Plan of Education Depart- ment
文摘Rock burst in a circular tunnel under high in-situ stress conditions was investigated with a numerical method coupled the rock failure process theory (RFPA) and discontinuous deformation theory (DDA). Some numerical tests were carraied out to investigate the failuer patterns of circular tunnel under unloading conditions. Compared the results under loading conditions,the shapes of failure zones are more regular under the unloading conditions. The failure pat-terns in the same type of rock mass are clearly different because of non-homogeneity of the rock material. The extension of cracks shows some predictability with an increasing of in-situ stress. When the homogeneity index of rocks (m) is ei-ther relatively high or low and lateral pressure coefficients (λ) is high,the number of regular shear slide cracks decreases and the probability of a rock burst also becomes lower. Our numerical simulation results show that the stability of sur-face rock and the natural bedding stratification of rock material greatly affect rock bursts. Installing bolts with due dili-gence and suitably can effectively prevent rock bursts. However,it is not effective to control rock bursts by releasing the strain energy with normal pre-boreholes.
基金Project 50639100 supported by the National Natural Science Foundation of China
文摘The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.
基金Project(52174098)supported by the National Natural Science Foundation of ChinaProject(2022JJ20063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023CXQD011)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.
基金supported by the National Natural Science Foundation of China[grant number 51991393]support from the Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology and Key Laboratory of Earthquake Resistance,Earthquake Mitigation,and Structural Safety funded by the Ministry of Education。
文摘Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42077244)the Open Research Fund of State Key Laboratory of Deep Earth Science and Engineering(Sichuan University)(Grant No.DESE 202201)the Fundamental Research Funds for the Central Universities(Grant No.2242022k30054).
文摘To investigate the influence of unloading effect of a circular tunnel face on rockburst process,by innovatively combining rock drilling unloading devices and triaxial systems,the strain rockburst simulation under the entire stress path of“high initial stressþinternal unloadingþstress adjustment”(HUS test)was realized for the intact cubic red sandstone samples(100 mm×100 mm×100 mm).Comparative tests were conducted on cubic red sandstone samples with prefabricated circular holes(425 mm)under the stress path of“prefabricated circular hole+þhigh initial stress+stress adjustment”(PHS test),thereby highlighting the influence of internal unloading on rockburst failure.The test results revealed that with an increase in vertical stress,the sidewalls in both the HUS and PHS tests suffered strain rockburst failure.Compared with the PHS test,the initial failure stress in the HUS test is lower,and it is easier to induce sidewall rockbursts.This indicates that the internal unloading influences the sidewall failure,causing an obvious strength-weakening effect,which becomes more significant with an increase in buried depth.The strain rockburst failure was more severe in the HUS test owing to the influence of internal unloading.V-shaped rockburst pits were formed in the HUS tests,whereas in the PHS test,arcshaped rockburst pits were produced.It was also found that strain rockburst failure may occur only when the rock has a certain degree of rockburst proneness.
基金Projects(41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2017zzts167)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.
基金Projects(11972378,41630642)supported by the National Natural Science Foundation of ChinaProject(2019zzts310)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases.
基金financial support from the National Natural Science Foundation of China (Nos.51904335,41630642)。
文摘True-triaxial compression tests were carried out on cubic granite samples with a circular through hole using a true-triaxial testing system to investigate the influence of saturated water content(SWC) on the failure process and characteristics of a circular tunnel of surrounding rocks. The spalling failure under SWC can be divided into four periods: calm period, buckling deformation period, period of rock fragment gradual buckling and exfoliation, and period of formation of symmetrical V-shaped notches. When the horizontal axial and vertical stresses were constant, the spalling failure severity was reduced with the increase in lateral stress. Under natural water content, a strong rockburst with dynamic failure characteristics occurred on the circular hole sidewall. Under SWC, the failure severity was reduced and the circular hole sidewall experienced spalling failure, exhibiting progressive static failure characteristics.Therefore, water can reduce the failure severity of surrounding rocks in deep underground engineering, which has a certain guiding significance for the prevention and control of rockbursts.
文摘The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProjects(51178468,51378510)supported by the National Natural Science Foundation of China
文摘The proliferation of Hoek-Brown nonlinear failure criterion and upper bound theorem makes it possible to evaluate the stability of circular tunnels with an original curved collapsing mechanism. The arch effect of shallow circle tunnel is not taken into consideration so that the mechanical characteristics can be easily described. Based on the mechanism, the upper bound solution of supporting pressure of tunnels under the condition of surface settlements and overloads on the ground surface is derived. The objective function is formed from virtual work equations under the variational principle, and solutions are presented by the optimum theory. Comparisons with previous works are made. The numerical results of the present method show great agreement with those of existing ones. With regard to the surface settlement and overloads, the influence of different rock parameters on the collapsing shape is analyzed.
基金Project supported by the National Natural Science Foundation of China (No.50274044) the Educational Committee of Shandong Province of China (No.G04D15) the Natural Science Foundation of Shandong Province of China (No.Y2002-A03)
文摘Mechanism of circular tunnel rockburst is that, when the carrying capacity of the centralized zone of plastic deformation in limiting state reduces, the comparatively intact part in rock mass unloads by way of elasticity; rockburst occurs immediately when the elastic energy released by the comparatively intact part exceeds the energy dissipated by plastic deformation. The equivalent strain was taken as a state variable to establish a catastrophe model of tunnel rockburst, and the computation expression of the earthquake energy released by tunnel rockburst was given. The analysis shows that, the conditions of rockburst occurrence are relative to rock's ratio of elastic modulus to descendent modulus and crack growth degree of rocks; to rock mass with specific rockburst tendency, there exists a corresponding critical depth of softened zone, and rockburst occurs when the depth of softened zone reaches.
文摘The two-dimensional transient response of an imperfect bonded circular lined pipeline lying in an elastic infinite medium is investigated.Imperfect boundary conditions between the surrounding elastic rock and the tunnel are modelled with a two-linear-spring design.The novelty of the manuscript consists in studying at the same time transient regimes and imperfect bonded interfaces for simulating the dynamic response of a tunnel embedded in an elastic infinite rock.Wave propagation fields in tunnel and rock are expressed in terms of infinite Bessel and Hankel series.To solve the transient problem,the Laplace transform and the associated Durbin’s algorithm are performed.To exhibit the dynamic responses,influences of various parameters such as the quality of the interface conditions and the thickness of the lining are presented.The dynamic hoop stresses and the solid displacements of both the tunnel and the rock are also proposed.
基金financial support from the National Natural Science Foundation of China(Grant Nos.U1965205 and 51779251)。
文摘Large shear deformation problems are frequently encountered in geotechnical engineering.To expose the shear failure mechanism of rock tunnels,compression-shear tests for rock models with circular tunnel were carried out,including single tunnel and adjacent double tunnels.The failure process is recorded by the external video and miniature cameras around the tunnel,accompanied by real-time acoustic emission monitoring.The experiments indicate that the shearing processes of rock tunnel can be divided into four steps:(i)cracks appeared around tunnels,(ii)shear cracks and spalling ejection developed,(iii)floor warping occurred,and(iv)shear cracks ran through the tunnel model.Besides,the roughness of the sheared fracture surface decreased with the increase in normal stress.Corresponding numerical simulation indicates that there are tensile stress concentrations and compressive stress concentrations around the tunnel during the shearing process,while the compressive stress concentration areas are under high risk of failure and the existence of adjacent tunnels will increase the degree of stress concentration.
文摘According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.
文摘Underground structures are susceptible to float and move upward during earthquakes when located in a liquefiable soil deposit.There are examples of this phenomenon in past major earthquake events.In this study,the uplift of circular tunnels in a liquefiable sand layer was investigated with a series of shaking table tests.The research has focused on the buried depth of the tunnel,tunnel diameter,tunnel weight,liquefaction extent,uplift mechanism,and factor of safety against liquefaction-induced uplift.According to the test results,the shallow buried depth,larger diameter,and lower weight can intensify the tunnel uplift,so the displacement in post-liquefaction time continues at the same rate as during the shaking time.Due to the shear-induced dilation,pore water pressure generation around the tunnel was reduced compared with that of the free field.The excess pore water pressure dissipation in the soil overlying the uplifted tun-nel was significant,which leads to suction in the soil deposit.Furthermore,the acceleration response of overlying soil with the uplifted tunnel was similar to that of the free field.However,the soil acceleration response around the tunnel without uplift was similar to the base motion.
文摘The effects of the interaction between a gallery lining and surrounding ground are evaluated. The gallery is circular with constant thickness and surrounding ground as geotechnical characteristics is soft one. Two types of ground are successively considered with bulk modulus K = 9,260 kPa and K = 4,630 kPa. The analysis is carried out for a gallery with 3.80 m inner diameter and 25 cm thickness. This under construction is part of the irrigation system of the "Los Rios" county (Ecuador). Comprehensive computations in various hypotheses pointed out the significant effects of the interaction. The sectional stresses (M, N) in the gallery lining embedded in soft ground depend mainly of the gallery depth versus ground surface. Contrary, the mechanical characteristics of the surrounding ground resulted to have little influence.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52108381,52090082,41772295,51978517)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059).
文摘Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.
基金supported by the 973 Project(No.2014CB046903)the National Natural Science Foundation of China(Nos.51325903 and 51279218)the Natural Science Foundation Project of CQ CSTC(Nos.CSTC2013KJRC-1JRCCJ30001 and CSTC2013JCYJYS0005)
文摘In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data.
基金The financial support of the Colombia-Purdue Institute for Advanced Scientific Research(CPI),Universidad del Valle(Colombia)and Purdue University-United States is gratefully acknowledged.
文摘Two-dimensional dynamic numerical analyses have been conducted,using FLAC 7.0,to evaluate the seismic response of underground structures located far from the seismic source,placed in either linear-elastic or nonlinear elastoplastic ground.The interaction between the ground and deep circular tunnels with a tied interface is considered.For the simulations,it is assumed that the liner remains in its elastic regime,and plane strain conditions apply to any cross section perpendicular to the tunnel axis.An elastoplastic constitutive model is implemented in FLAC to simulate the nonlinear ground.The effect of input frequency and relative stiffness between the liner and the ground,on the seismic response of tunnels,is evaluated.The response is studied in terms of distortions normalized with respect to those of the free field,and load demand(axial forces and bending moments)in the liner.In all cases,i.e.for linear-elastic and nonlinear ground models,the results show negligible effect of the input frequency on the distortions of the cross section,for input frequencies smaller than 5 Hz;that is for ratios between the wave length and the tunnel opening(k=D)larger than ten for linear-elastic and nine for nonlinear ground.Larger normalized distortions are obtained for the nonlinear than for the linear-elastic ground,for the same relative stiffness,with differences increasing as the tunnel becomes more flexible,or when the amplitude of the dynamic input shear stress increases.It has been found that normalized distortions for the nonlinear ground do not follow a unique relationship,as it happens for the linear-elastic ground,but increase as the amplitude of the dynamic input increases.The loading in the liner decreases as the structure becomes more flexible with respect to the ground,and is smaller for a tunnel placed in a stiffer nonlinear ground than in a softer nonlinear ground,for the same flexibility ratio.