To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, bas...To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, based on the Biot-Savart law and Ampere's rule, the magnetic induction generated by a straight current carrying conductor and a current loop is discussed, respectively. Then the novel coil winding method is developed by adjusting the location of inhomogeneous joints. The joints are periodically scattered along the circumferential direction and symmetrically designed around the central axis.Numerical results show that the quite non-uniform temperature in the base of pot at the circular direction is effectively improved by using the proposed winding method. The potential danger produced by high temperature at some region of coils plate is minimized.It is energy-efficient and safe for residential appliances.展开更多
Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a gr...Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.41304119,No.41104097,and No.61201007the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120185120012the Oversea Academic Training Fund sponsored by China Scholarship Council and University of Electronic Science and Technology of China under Grant No.201306075027
文摘To solve the problem about the inhomogeneous thermal effect of pot heated by coils along the circumference, a novel coil winding method is proposed and compared with the general winding method in the paper. First, based on the Biot-Savart law and Ampere's rule, the magnetic induction generated by a straight current carrying conductor and a current loop is discussed, respectively. Then the novel coil winding method is developed by adjusting the location of inhomogeneous joints. The joints are periodically scattered along the circumferential direction and symmetrically designed around the central axis.Numerical results show that the quite non-uniform temperature in the base of pot at the circular direction is effectively improved by using the proposed winding method. The potential danger produced by high temperature at some region of coils plate is minimized.It is energy-efficient and safe for residential appliances.
基金supported by National Space Science Center (Xinglong FPI data)Institute of Geology and Geophysics (meteor radar data)Beijing Municipal Science and Technology Commission (Grant No. Z151100003615001)
文摘Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.